化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2248-2255.DOI: 10.11949/0438-1157.20191375
收稿日期:
2019-11-13
修回日期:
2020-01-13
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
尹春华
作者简介:
尹春华(1972—),博士,副教授,基金资助:
Chunhua YIN(),Siyu PENG,Leizhen MA,Haiyang ZHANG,Hai YAN
Received:
2019-11-13
Revised:
2020-01-13
Online:
2020-05-05
Published:
2020-05-05
Contact:
Chunhua YIN
摘要:
采用植物乳杆菌合成了纳米氧化锌粒子并成功用于脂肪酶的固定化。将筛选得到的高耐硫酸锌的植物乳杆菌株LP4用于纳米氧化锌的合成,采用扫描电镜、透射电镜和X射线衍射等一系列分析测试手段对得到的产物进行了表征。结果显示合成的材料为直径9~35 nm球形颗粒,在359 nm处有最大吸收峰,晶体呈六方体纤锌矿结构,X射线衍射峰与标准纳米氧化锌对比结果一致,这些结果表明植物乳杆菌株LP4成功合成了纳米氧化锌。然后将合成得到的纳米氧化锌粒子用于固定假丝酵母(Candida sp.)脂肪酶,与普通氧化锌以及传统法合成的纳米氧化锌粒子相比,生物法合成的纳米氧化锌固定效果最好,固定化酶的酶活收率分别比普通氧化锌和传统纳米氧化锌提高114.2%和20.5%。论文还对该生物纳米固定化酶的pH和热稳定性以及重复使用性能进行了测定,结果表明酶固定化后稳定性明显提高,而且具有较好的重复使用性能。
中图分类号:
尹春华, 彭思雨, 马垒珍, 张海洋, 闫海. 纳米氧化锌的生物法合成及固定脂肪酶的研究[J]. 化工学报, 2020, 71(5): 2248-2255.
Chunhua YIN, Siyu PENG, Leizhen MA, Haiyang ZHANG, Hai YAN. Biosynthesis of ZnO nanoparticles and their application in lipase immobilization[J]. CIESC Journal, 2020, 71(5): 2248-2255.
ZnSO4 /(mmol/L) | LP2 | LP3 | LP1 | LP4 |
---|---|---|---|---|
10 | 5.70±0.21 | 6.82±0.29 | 7.23±0.20 | 7.41±0.30 |
20 | 5.61±0.25 | 6.31±0.27 | 6.41±0.31 | 7.52±0.31 |
30 | — | — | 4.62±0.22 | 7.33±0.29 |
40 | — | — | 3.74±0.16 | 7.32±0.34 |
50 | — | — | — | 6.13±0.28 |
60 | — | — | — | 4.03±0.19 |
70 | — | — | — | — |
表1 植物乳杆菌在不同ZnSO4浓度MRS培养基中的生长情况(OD600)
Table 1 Growth of L. plantarum in MRS medium of different ZnSO4 concentration (maximum OD600)
ZnSO4 /(mmol/L) | LP2 | LP3 | LP1 | LP4 |
---|---|---|---|---|
10 | 5.70±0.21 | 6.82±0.29 | 7.23±0.20 | 7.41±0.30 |
20 | 5.61±0.25 | 6.31±0.27 | 6.41±0.31 | 7.52±0.31 |
30 | — | — | 4.62±0.22 | 7.33±0.29 |
40 | — | — | 3.74±0.16 | 7.32±0.34 |
50 | — | — | — | 6.13±0.28 |
60 | — | — | — | 4.03±0.19 |
70 | — | — | — | — |
图1 植物乳杆菌LP4细胞(a)、植物乳杆菌合成的粗ZnO-NPs(b)和煅烧后ZnO-NPs(c)扫描电镜图
Fig.1 SEM micrograph of L. plantarum cells (a), crude ZnO-NPs synthesized by L. plantarum (b), and ZnO-NPs after calcination (c)
图5 不同ZnO固定Candida sp.脂肪酶的比较
Fig.5 Comparison of immobilized Candida sp. lipase on various types of ZnOA—native ZnO; B—traditional ZnO-NPs; C—ZnO-NPs synthesized by L. plantarum
图6 生物法ZnO-NPs固定化酶与游离酶的pH和热稳定性比较
Fig.6 Stabilities of free lipase and immobilized lipase prepared by biosynthesized ZnO-NPs(a) pH stability; (b) thermal stability
1 | Panwar D, Kaira G S, Kapoor M. Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-beta-1, 4-mannanase: improved activity, stability and reusability[J]. International Journal of Biological Macromolecules, 2017, 105(1): 1289-1299. |
2 | 尹春华, 马烨炜, 赵志敏, 等. 新型层状交联酶聚集体的制备条件优化与性质研究[J]. 化工学报, 2018, 69(12): 5192-5198. |
Yin C H, Ma Y W, Zhao Z Z, et al. Optimized preparation and characterization of novel layered cross-linked enzyme aggregates of Candida sp. lipase[J]. CIESC Journal, 2018, 69(12): 5192-5198. | |
3 | Ansari S A, Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review[J]. Biotechnology Advances, 2012, 30(3): 512-23. |
4 | Talekar S, Ghodake V, Ghotage T, et al. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase[J]. Bioresource Technology, 2012, 123(3): 542-547. |
5 | 饶超, 董依慧, 庄伟, 等. TiO2纳米管阵列孔径调控葡萄糖氧化酶生物传感器性能[J]. 化工学报, 2016, 67(10): 4324-4333. |
Rao C, Dong Y H, Zhuang W, et al. Regulate properties of glucose oxidase biosensors through pore sizes of TiO2 nanotube arrays[J]. CIESC Journal, 2016, 67(10): 4324-4333. | |
6 | 王翠, 姜艳军, 周丽亚, 等. 纳米氧化硅固定辣根过氧化物酶处理苯酚废水[J]. 化工学报, 2011, 62(7): 2026-2032. |
Wang C, Jiang Y J, Zhou L Y, et al. Horseradish peroxidase encapsulated on nanosilica for phenol removal[J]. CIESC Journal, 2011, 62(7): 2026-2032. | |
7 | Bilal M, Asgher M, Cheng H, et al. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design[J]. Critical Reviews in Biotechnology, 2019, 39(2): 202-219. |
8 | 刘闯, 王元贵, 耿家青, 等. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521. |
Liu C, Wang Y G, Geng J Q, et al. Biosynthesis of inorganic nanoparticles[J]. Progress in Chemistry, 2011, 23(12): 2510-2521. | |
9 | Dameron C T, Reese R N, Mehra R K, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature, 1989, 338(6216): 596-597. |
10 | Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis[J]. Nano Letters, 2001, 1(10): 515-519. |
11 | Borovaya M, Pirko Y, Krupodorova T, et al. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm[J]. Biotechnology & Biotechnological Equipment, 2015, 29(6): 1156-1163. |
12 | Mukherjee P, Roy M, Mandal B P, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum[J]. Nanotechnology, 2008, 19(7): 1-7. |
13 | Bharde A A, Parikh R Y, Baidakova M, et al. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles[J]. Langmuir, 2008, 24(11): 5787-5794. |
14 | Tripathi R M, Bhadwal A S, Gupta R K, et al. ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 141(12): 288-295. |
15 | Lengke M F, Fleet M E, Southam G. Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200 degrees C[J]. Geomicrobiology Journal, 2006, 23(8): 591-597. |
16 | Hamad M T. Biosynthesis of silver nanoparticles by fungi and their antibacterial activity[J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1015-1024. |
17 | Bharde A, Rautaray D, Bansal V, et al. Extracellular biosynthesis of magnetite using fungi[J]. Small, 2006, 2(1): 135-141. |
18 | Chen Y L, Tuan H Y, Tien C W, et al. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli[J]. Biotechnology Progress, 2009, 25(5): 1260-1266. |
19 | Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots, to nanorods[J]. Angewandte Chemie-International Edition, 2002, 41(7): 1188-1191. |
20 | Xie Y P, He Y P, Irwin P L, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni[J]. Applied and Environmental Microbiology, 2011, 77(7): 2325-2331. |
21 | Wang Y T, Yu L, Wang J, et al. A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 8-12. |
22 | Husain Q, Ansari S A, Alam F, et al. Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism[J]. International Journal of Biological Macromolecules, 2011, 49(1): 37-43. |
23 | Gargouri M, Legoy M D. Bienzymatic reaction for hydroperoxide production in a multiphasic system[J]. Enzyme and Microbial Technology, 1997, 21(2): 79-84. |
24 | 徐东然, 肖效光, 王长征, 等. 退火及超声处理对ZnO薄膜结构和发光特性的影响[J]. 强激光与粒子束, 2007, 19(8): 1390-1394. |
Xu D R, Xiao X G, Wang C Z, et al. Influence of annealing and supersonic treatments on structure and photoluminescence of ZnO films[J]. High Power Laser and Particle Beams, 2007, 19(8): 1390-1394. | |
25 | 宋国利, 孙凯霞. 纳米ZnO薄膜可见发射机制研究[J]. 光子学报, 2006, 35(3): 389-393. |
Song G L, Sun K X. Study on the visible emission mechanism of nanocrystalline ZnO thin films[J]. Acta Photonica Sinica, 2006, 35(3): 389-393. | |
26 | Hutson A R. Hall effect studies of doped zinc oxide single crystals[J]. Physical Review, 1957, 108(2): 222-230. |
27 | Singh B N, Rawat A K, Khan W, et al. Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids[J]. PLoS One, 2014, 9(9): 1-12. |
28 | Sun Y, Wang L, Yu X, et al. Facile synthesis of flower-like 3D ZnO superstructures via solution route[J]. Cryst. Engcomm., 2012, 14(9): 3199-3204. |
29 | Wan L S, Ke B B, Xu Z K. Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization[J]. Enzyme and Microbial Technology, 2008, 42(4): 332-339. |
30 | Isik C, Arabaci G, Dogac Y I, et al. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 99(6): 1226-1235. |
31 | 谭天伟, 陈必强. Candida sp. 99-125脂肪酶及其在化学品合成中的应用[J]. 化工学报, 2010, 61(7): 1685-1692. |
Tan T W, Chen B Q. Lipase from Candida sp. 99-125 and its application in synthesis of chemicals[J]. CIESC Journal, 2010, 61(7): 1685-1692. | |
32 | 尹春华, 韩烨, 吕乐, 等. 酵母脂肪酶酶促合成虾青素琥珀酸酯及优化[J]. 化工学报, 2015, 66: 294-299. |
Yin C H, Han Y, Lyu L, et al. Optimized enzymatic synthesis of astaxanthin succinate in organic solvents [J]. CIESC Journal, 2015, 66: 294-299. | |
33 | Cui J D, Liu R L, Li L B. A facile technique to prepare cross-linked enzyme aggregates of bovine pancreatic lipase using bovine serum albumin as an additive[J]. Korean Journal of Chemical Engineering, 2016, 33(2): 610-615. |
34 | Wilson L, Manes A, Soler L, et al. Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase[J]. Process Biochemistry, 2009, 44(3): 322-326. |
35 | Torres M P G, Foresti M L, Ferreira M L. CLEAs of Candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core: study of their catalytic activity[J]. Biochemical Engineering Journal, 2014, 90(9): 36-43. |
36 | Wang S G, Zheng D B, Yin L Y, et al. Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle[J]. Enzyme and Microbial Technology, 2017, 107(12): 22-23. |
[1] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[2] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[5] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[6] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[7] | 张秋华, 刘曼路, 王峥, 张一鸣, 苏海佳. 维生素K2的生物合成及其甲萘醌基团合成酶的功能分析[J]. 化工学报, 2023, 74(1): 342-354. |
[8] | 张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
[9] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[10] | 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146. |
[11] | 李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404. |
[12] | 王立晖, 刘焕, 李赫宇, 郑晓冰, 姜艳军, 高静. 核壳结构磁性树枝状纤维形有机硅固定化脂肪酶制备及其应用[J]. 化工学报, 2021, 72(9): 4861-4871. |
[13] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
[14] | 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
[15] | 陈婷婷, 尹炯婷, 许映杰. 离子液体在纳米ZnO材料制备中的研究进展[J]. 化工学报, 2021, 72(5): 2436-2447. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 570
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||