化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3472-3484.DOI: 10.11949/0438-1157.20230348
收稿日期:
2023-04-10
修回日期:
2023-06-22
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
刘文芳
作者简介:
孟令玎(1998—),女,硕士研究生,15520711215@163.com
Lingding MENG(), Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU(
)
Received:
2023-04-10
Revised:
2023-06-22
Online:
2023-08-25
Published:
2023-10-18
Contact:
Wenfang LIU
摘要:
分别以改性聚乙烯(PE)膜和氧化硅(SiO2)为载体,考察了不同方法固定化碳酸酐酶(CA)的活性,然后以聚多巴胺/聚乙烯亚胺(PDA/PEI)改性的PE和SiO2固定化CA为研究对象,考察了最适反应条件及稳定性。结果表明:在相同的反应条件下,PDA/PEI-SiO2固定化CA的酶活回收率最高,为58.8%,PDA/PEI-PE固定化CA的酶活回收率为17.1%,使用10次后保留活性分别为84.8%和90.2%;固定化酶的最适反应条件均为35℃、pH 8.5,与游离酶相同;在较高温度(55~65℃)和较高酸浓度(>0.010 mol/L)下的稳定性高于游离酶;Mn2+对游离酶和固定化酶活性均有显著的促进作用,K+、Mg2+无明显影响;PDA/PEI-SiO2和PDA/PEI-PE固定化CA在4℃下贮存10 d,保留活性分别为95.2%和92.4%;当用于CO2水合反应时,CaCO3的生成量分别是游离CA的120%和70%。固定化CA在CO2捕集的工业化应用方面具有很大潜力。
中图分类号:
孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484.
Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica[J]. CIESC Journal, 2023, 74(8): 3472-3484.
Samples | Zeta potential/mV |
---|---|
SiO2 | -51.5 |
PDA/PEI-SiO2 | +71.6 |
KH550-SiO2 | +20.5 |
KH560-SiO2 | -24.1 |
表1 SiO2改性前后的表面Zeta电位
Table 1 Surface Zeta potential of SiO2 before and after modification
Samples | Zeta potential/mV |
---|---|
SiO2 | -51.5 |
PDA/PEI-SiO2 | +71.6 |
KH550-SiO2 | +20.5 |
KH560-SiO2 | -24.1 |
Supports | mCA/mg | ( (mg/mg) | Ref. | |
---|---|---|---|---|
Free CA | 12.84 | 0.2 | 64.2 | this work |
PDA/PEI-SiO2 | 15.68 | 0.2 | 78.4 | this work |
PDA/PEI-PE | 9.33 | 0.2 | 46.6 | this work |
Mesoporous aluminosilicate | 16.14 | 1 | 16.1 | [ |
Alumino-siloxane aerogel beads | 12 | 0.017 | 705.9 | [ |
KH550-PVDF | ~8 | 0.8 | 10.0 | [ |
KH560-PVDF | ~6 | 0.8 | 7.5 | [ |
表2 固定化CA的固碳性能
Table 2 CO2 sequestration performance of immobilized CA
Supports | mCA/mg | ( (mg/mg) | Ref. | |
---|---|---|---|---|
Free CA | 12.84 | 0.2 | 64.2 | this work |
PDA/PEI-SiO2 | 15.68 | 0.2 | 78.4 | this work |
PDA/PEI-PE | 9.33 | 0.2 | 46.6 | this work |
Mesoporous aluminosilicate | 16.14 | 1 | 16.1 | [ |
Alumino-siloxane aerogel beads | 12 | 0.017 | 705.9 | [ |
KH550-PVDF | ~8 | 0.8 | 10.0 | [ |
KH560-PVDF | ~6 | 0.8 | 7.5 | [ |
1 | Talekar S, Jo B H, Dordick J S, et al. Carbonic anhydrase for CO2 capture, conversion and utilization[J]. Current Opinion in Biotechnology, 2022, 74: 230-240. |
2 | Asif M, Suleman M, Haq I, et al. Post-combustion CO2 capture with chemical absorption and hybrid system: current status and challenges[J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 998-1031. |
3 | Saeed I M, Alaba P, Mazari S A, et al. Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 79: 212-233. |
4 | Bernhardsen I M, Knuutila H K. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa [J]. International Journal of Greenhouse Gas Control, 2017, 61: 27-48. |
5 | Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715. |
6 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
Liang S, Zong M H, Lou W Y. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114. | |
7 | Sun M K, Alkon D L. Carbonic anhydrase gating of attention: memory therapy and enhancement[J]. Trends in Pharmacological Sciences, 2002, 23(2): 83-89. |
8 | Sharma T, Sharma S, Kamyab H, et al. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: a review[J]. Journal of Cleaner Production, 2020, 247: 119138. |
9 | 孟令玎, 毛梦雷, 廖奇勇 等. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
Meng L D, Mao M L, Liao Q Y, et al. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. | |
10 | De Oliveira Maciel A, Christakopoulos P, Rova U, et al. Carbonic anhydrase to boost CO2 sequestration: improving carbon capture utilization and storage (CCUS)[J]. Chemosphere, 2022, 299: 134419. |
11 | Molina-Fernández C, Luis P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: a review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
12 | Rasouli H, Iliuta I, Bougie F, et al. Enzyme-immobilized flat-sheet membrane contactor for green carbon capture[J]. Chemical Engineering Journal, 2021, 421: 129587. |
13 | Sun J, Wei L, Wang Y, et al. Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes[J]. Biotechnology and Applied Biochemistry, 2018, 65(3): 362-371. |
14 | Shen J, Yuan Y, Salmon S. Carbonic anhydrase immobilized on textile structured packing using chitosan entrapment for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(23): 7772-7785. |
15 | Rasouli H, Iliuta I, Bougie F, et al. Enhanced CO2 capture in packed-bed column bioreactors with immobilized carbonic anhydrase[J]. Chemical Engineering Journal, 2022, 432: 134029. |
16 | Chang S, He Y, Li Y, et al. Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture[J]. Journal of Cleaner Production, 2021, 316: 128163. |
17 | Fei X, Chen S, Liu D, et al. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization[J]. Journal of Bioscience and Bioengineering, 2016, 122(3): 314-321. |
18 | Xu J, Zhang Z, Pang S, et al. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFs[J]. Biochemical Engineering Journal, 2022, 189: 108719. |
19 | Wang Y, Chen Y, Wang C, et al. Polyethylenimine-modified membranes for CO2 capture and in situ hydrogenation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29003-29009. |
20 | Sun J, Wang C, Wang Y, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes[J]. Journal of Applied Polymer Science, 2019, 136(29): 47784. |
21 | 王彩红, 孙婧, 季书馨 等. 聚乙烯亚胺/多巴胺改性氧化硅固定碳酸酐酶[J]. 化工学报, 2019, 70(5): 1887-1893. |
Wang C H, Sun J, Ji S X, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine co-deposited SiO2 [J]. CIESC Journal, 2019, 70(5): 1887-1893. | |
22 | Zhang Q, Huang R, Guo L H. One-step and high-density protein immobilization on epoxysilane-modified silica nanoparticles[J]. Chinese Science Bulletin, 2009, 54(15): 2620-2626. |
23 | Ozdemir E. Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam[J]. Energy & Fuels, 2009, 23(11): 5725-5730. |
24 | Yang H C, Liao K J, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230. |
25 | Lü Y, Lu G, Wang Y, et al. Functionalization of cubic Ia3d mesoporous silica for immobilization of penicillin G acylase[J]. Advanced Functional Materials, 2007, 17(13): 2160-2166. |
26 | Bamane P B, Jagtap R N. Synthesis of the hydrophilic additive by grafting glycidyloxypropyl trimethoxysilane on hydrophilic nanosilica and its modification by using dimethyl propionic acid for self-cleaning coatings[J]. Colloid and Interface Science Communications, 2021, 43: 100444. |
27 | Hou J, Ji C, Dong G, et al. Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase[J]. Journal of Materials Chemistry A, 2015, 3(33): 17032-17041. |
28 | Jun S H, Yang J, Jeon H, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth[J]. Environmental Science & Technology, 2020, 54(2): 1223-1231. |
29 | Lee H, Dellatore Shara M, Miller William M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
30 | Dai M, Huang T, Chao L, et al. Horseradish peroxidase-catalyzed polymerization of l-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid[J]. Talanta, 2016, 149: 117-123. |
31 | Hou J, Dong G, Xiao B, et al. Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion[J]. Journal of Materials Chemistry A, 2015, 3(7): 3332-3342. |
32 | Shao P, Chen H, Ying Q, et al. Structure–activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution[J]. Energy & Fuels, 2020, 34(2): 2089-2096. |
33 | Cantone S, Ferrario V, Corici L, et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods[J]. Chemical Society Reviews, 2013, 42(15): 6262-6276. |
34 | Jing G, Pan F, Lv B, et al. Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture[J]. Process Biochemistry, 2015, 50(12): 2234-2241. |
35 | Wanjari S, Prabhu C, Yadav R, et al. Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction[J]. Process Biochemistry, 2011, 46(4): 1010-1018. |
36 | Lavecchia R, Zugaro M. Thermal denaturation of erythrocyte carbonic anhydrase[J]. FEBS Letters, 1991, 292(1): 162-164. |
37 | Sarraf N S, Saboury A A, Ranjbar B, et al. Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature[J]. Acta Biochimica Polonica, 2004, 51(3): 665-671. |
38 | Pocker Y, Stone J T. The catalytic versatility of erythrocyte carbonic anhydrase(Ⅲ): Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate[J]. Biochemistry, 1967, 6(3): 668-678. |
39 | Reetz Manfred T, Sun Z, Qu G. Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science [M]. Wiley-VCH GmbH, 2023. |
40 | 李宇彤, 白姝, 余林玲. PEI接枝纳米二氧化硅载体的构建及碳酸酐酶的固定化[J]. 离子交换与吸附, 2019, 35(4): 300-311. |
Li Y T, Bai S, Yu L L. Synthesis of polyethyleneimine-grafted silica nanoparticles and carbonic anhydrase immobilization[J]. Ion Exchange and Adsorption, 2019, 35(4): 300-311. | |
41 | Zhu Y, Li W, Sun G, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
42 | Mao M, Zhai T, Meng L, et al. Controllable preparation of mesoporous silica and its application in enzyme-catalyzed CO2 reduction[J]. Chemical Engineering Journal, 2022, 437: 135479. |
43 | Ren S, Li C, Tan Z, et al. Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. |
44 | Gitlin I, Carbeck J D, Whitesides G M. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis[J]. Angewandte Chemie International Edition, 2006, 45(19): 3022-3060. |
45 | Schofield K. Mercury emission control from coal combustion systems: a modified air preheater solution[J]. Combustion and Flame, 2012, 159(4): 1741-1747. |
46 | 朱轶林. 固定化碳酸酐酶的酶学性质和催化吸收CO2特性的实验研究[D]. 重庆: 重庆大学, 2015. |
Zhu Y L. Research on enzymatic proprities of immobilized carbonic anhydrase and CO2 catalytic absorption[D]. Chongqing: Chongqing University, 2015. | |
47 | Wu Y, Zhao X, Li P, et al. Impact of Zn, Cu, and Fe on the activity of carbonic anhydrase of erythrocytes in ducks[J]. Biological Trace Element Research, 2007, 118(3): 227-232. |
48 | Tan S I, Han Y L, Yu Y J, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase[J]. Process Biochemistry, 2018, 73: 38-46. |
49 | Ramanan R, Kannan K, Sivanesan S D, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii [J]. World Journal of Microbiology and Biotechnology, 2009, 25(6): 981-987. |
50 | Kim Y K, Lee S Y, Oh B K. Enhancement of formic acid production from CO2 in formate dehydrogenase reaction using nanoparticles[J]. RSC Advances, 2016, 6(111): 109978-109982. |
51 | Wanjari S, Prabhu C, Satyanarayana T, et al. Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction[J]. Microporous and Mesoporous Materials, 2012, 160: 151-158. |
52 | Shamna I, Kwan Jeong S, Margandan B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[7] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[8] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[9] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[10] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[11] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[12] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[13] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
[14] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[15] | 杨宏欣, 李兴亚, 葛亮, 徐铜文. 含哌啶阳离子侧长链型一/二价阴离子选择性分离膜的制备[J]. 化工学报, 2022, 73(8): 3739-3748. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 605
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 208
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||