化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4473-4490.DOI: 10.11949/0438-1157.20191596
收稿日期:
2019-12-30
修回日期:
2020-04-15
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
曹渊
作者简介:
徐彦芹(1984—),女,博士研究生,高级工程师,基金资助:
Yanqin XU(),Liyue XIAO(
),Yuan CAO(
),Changguo CHEN,Dan WANG
Received:
2019-12-30
Revised:
2020-04-15
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yuan CAO
摘要:
电极材料是超级电容器(SCs)的关键部件,金属有机框架(MOFs)作为一种多孔材料,由于其具有比表面积大、结构可控、孔径可调等优点在SCs电极材料领域得到诸多关注,而MOFs的低导电性和稳定性仍然是实际应用中的主要挑战。MOF复合材料是一类由MOFs与一种或多种不同材料组成的复合材料,它可以有效地结合MOFs和其他功能材料的优势,例如优良的导电性和独特的电化学性质等。因此,MOF复合材料可以实现高可逆容量和优良的循环性能,克服MOFs材料的缺点,在超级电容器电极材料领域具有广阔的应用前景。根据与MOFs复合的材料维度分类,可分为0D、1D、2D和3D MOFs四类复合材料,重点综述了这四类复合材料的组成及合成方法,并系统介绍了MOF复合材料的SCs应用,对其发展前景进行展望。
中图分类号:
徐彦芹, 肖俪悦, 曹渊, 陈昌国, 王丹. 金属有机框架复合材料在超级电容器中的合成及应用研究[J]. 化工学报, 2020, 71(10): 4473-4490.
Yanqin XU, Liyue XIAO, Yuan CAO, Changguo CHEN, Dan WANG. Research on synthesis and application of metal-organic frame composites in supercapacitors[J]. CIESC Journal, 2020, 71(10): 4473-4490.
1 | Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12): 2796-2806. |
2 | Sundaram M M, Mitchell D R G. Dispersion of Ni2+ ions via acetate precursor in the preparation of NaNiPO4 nanoparticles: effect of acetate vs. nitrate on the capacitive energy storage properties[J]. Dalton Transactions, 2017, 46(40): 13704-13713. |
3 | Wu Z S, Ren W, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano, 2010, 4(10): 5835-5842. |
4 | Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chemical Society Reviews, 2014, 43(10): 3303-3323. |
5 | Lopes J A P, Soares F J, Almeida P M R. Integration of electric vehicles in the electric power system[J]. Proceedings of the IEEE, 2010, 99(1): 168-183. |
6 | Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Mater., 2008, 7: 845-859. |
7 | Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. |
8 | Wang D G, Wang H, Song M, et al. Bodipy‐based carbonaceous materials for high performance electrical capacitive energy storage[J]. Chemistry—an Asian Journal, 2018, 13(20): 3051-3056. |
9 | Wang D G, Wang H, Lin Y, et al. Synthesis and morphology evolution of ultrahigh content nitrogen‐doped, micropore‐dominated carbon materials as high‐performance supercapacitors[J]. ChemSusChem, 2018, 11(22): 3932-3940. |
10 | Mosa I M, Pattammattel A, Kadimisetty K, et al. Ultrathin graphene-protein supercapacitors for miniaturized bioelectronics[J]. Advanced Energy Materials, 2017, 7(17): 1700358. |
11 | Pu X, Li L, Liu M, et al. Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials, 2016, 28(1): 98-105. |
12 | Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self‐powered electronics[J]. Advanced Materials, 2016, 28(22): 4283-4305. |
13 | Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature Nanotechnology, 2014, 9(5): 397. |
14 | Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6): 2065-2129. |
15 | Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
16 | Tang Y, Liu Z, Guo W, et al. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor[J]. Electrochimica Acta, 2016, 190: 118-125. |
17 | Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473. |
18 | Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816. |
19 | Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50(13): 1519-1522. |
20 | Chen B, Eddaoudi M, Hyde S, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021-1023. |
21 | Zhou L, Wang Y, Zhou C, et al. From hydrogen-bonded net-to-net framework to twofold interpenetrated (4, 6) net: effect of ligand topology on the supramolecular structural diversity[J]. Cryst. Growth Des., 2007, 7: 300-306. |
22 | Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J. Am. Chem. Soc., 2005, 127: 17998-17999. |
23 | Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications[J]. Energy Environ. Sci., 2012, 5:9269-9290. |
24 | Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. |
25 | Ding M, Cai X, Jiang H. Improving MOF stability: approaches and applications[J]. Chemical Science, 2019, 10(44): 10209-10230. |
26 | Xue Y, Zheng S, Xue H, et al. Metal-organic framework composites and their electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(13): 7301-7327. |
27 | Díaz R, Orcajo M G, Botas J A, et al. Co8-MOF-5 as electrode for supercapacitors[J]. Mater. Lett., 2012, 68: 126-128. |
28 | Chen Y J, Wang N, Hu W C, et al. In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage[J]. J. Porous Mat., 2019, 26: 921-929. |
29 | Gao Y, Wu J, Zhang W, et al. The electrochemical performance of SnO2 quantum dots@ zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors[J]. Materials Letters, 2014, 128: 208-211. |
30 | Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. J. Mater. Chem. A, 2014, 2: 16640-16644. |
31 | Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. J. Mater. Chem. A, 2014, 2: 19005-19010. |
32 | Gong Y, Li J, Jiang P G, et al. Novel metal (Ⅱ) coordination polymers based on N,N′-bis-(4-pyridyl) phthalamide as supercapacitor electrode materials in an aqueous electrolyte[J]. Dalton Trans., 2013, 42: 1603-1611. |
33 | Du W, Bai Y L, Xu J, et al. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors[J]. Journal of Power Sources, 2018, 402: 281-295. |
34 | Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145. |
35 | Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy, 2017, 34: 205-214. |
36 | Guo S N, Zhu Y, Yan Y Y, et al. (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor[J]. Journal of Power Sources, 2016, 316: 176-182 |
37 | Choi K M, Jeong H M, Park J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano, 2014, 8(7): 7451-7457. |
38 | Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@ MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307: 267-291. |
39 | Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9): 763. |
40 | Zhang S, Liu H, Sun C, et al. CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation[J]. Journal of Materials Chemistry A, 2015, 3(10): 5294-5298. |
41 | Aijaz A, Karkamkar A, Choi Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. Journal of the American Chemical Society, 2012, 134(34): 13926-13929. |
42 | Railey P, Song Y, Liu T, et al. Metal organic frameworks with immobilized nanoparticles: synthesis and applications in photocatalytic hydrogen generation and energy storage[J]. Materials Research Bulletin, 2017, 96: 385-394. |
43 | Xu Y, Zheng S, Tang H, et al. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Materials, 2017, 9: 11-30. |
44 | Vayssieres L. On the design of advanced metal oxide nanomaterials[J]. International Journal of Nanotechnology, 2004, 1(1/2): 1-41. |
45 | Xiao X, Li X, Zheng S, et al. Nanostructured germanium anode materials for advanced rechargeable batteries[J]. Advanced Materials Interfaces, 2017, 4(6): 1600798. |
46 | Deng M, Bo X, Guo L. Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks: effect of the carrier structures on electrocatalytic performances of composites[J]. Journal of Electroanalytical Chemistry, 2018, 815: 198-209. |
47 | Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: in situ investigation using synchrotron radiation[J]. Chemistry of materials, 2004, 16(9): 1813-1821. |
48 | Pang H, Zhang Y, Cheng T, et al. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors[J]. Nanoscale, 2015, 7(38): 16012-16019. |
49 | Liu H, Liu Y, Li Y, et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13362-13369. |
50 | Zheng S, Li B, Tang Y, et al. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions[J]. Nanoscale, 2018, 10(27): 13270-13276. |
51 | Chen L, Chen H, Li Y. One-pot synthesis of Pd@ MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94): 14752-14755. |
52 | Zeng T, Zhang X, Wang S, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science & Technology, 2015, 49(4): 2350-2357. |
53 | Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544. |
54 | Alivisatos P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004, 22(1): 47. |
55 | Somers R C, Bawendi M G, Nocera D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chemical Society Reviews, 2007, 36(4): 579-591. |
56 | Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal- peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells[J]. Nano Letters, 2004, 4(10): 1827-1832. |
57 | Xu C, Mochizuki D, Hashimoto Y, et al. Luminescence of ortho‐metalated iridium complexes encapsulated in zeolite supercages by the ship‐in‐a‐bottle method[J]. European Journal of Inorganic Chemistry, 2012, (19): 3113-3120. |
58 | Yu Y, Mai J, Wang L, et al. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture[J]. Scientific Reports, 2014, 4: 5997. |
59 | Urrego S, Serra E, Alfredsson V, et al. Bottle-around-the-ship: a method to encapsulate enzymes in ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 173-178. |
60 | Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@ MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307: 267-291. |
61 | Turner S, Lebedev O I, Schröder F, et al. Direct imaging of loaded metal-organic framework materials (Metal@ MOF-5)[J]. Chemistry of Materials, 2008, 20(17): 5622-5627. |
62 | Lu G, Li S, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012, 4(4): 310. |
63 | Kaur R, Paul A K, Deep A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene[J]. Forensic Science International, 2014, 242: 88-93. |
64 | Lin X, Gao G, Zheng L, et al. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing[J]. Analytical Chemistry, 2013, 86(2): 1223-1228. |
65 | Falcaro P, Hill A J, Nairn K M, et al. A new method to position and functionalize metal-organic framework crystals[J]. Nature Communications, 2011, 2: 237. |
66 | Jeong E, Lee W R, Ryu D W, et al. Reversible structural transformation and selective gas adsorption in a unique aqua-bridged Mn (Ⅱ) metal-organic framework[J]. Chemical Communications, 2013, 49(23): 2329-2331. |
67 | Xu M W, Bao S J, Li H L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J].Journal of Solid State Electrochemistry, 2007, 11(3): 372-377. |
68 | Falcaro P, Ricco R, Doherty C M, et al. MOF positioning technology and device fabrication[J]. Chemical Society Reviews, 2014, 43(16): 5513-5560. |
69 | Zhan W, Kuang Q, Zhou J, et al. Semiconductor@ metal-organic framework core-shell heterostructures: a case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society, 2013, 135(5): 1926-1933. |
70 | Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137(15): 4920-4923. |
71 | Zheng S, Li X, Yan B, et al. Transition‐metal (Fe, Co, Ni) based metal‐organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017, 7(18): 1602733. |
72 | Yang X, Jiang X, Huang Y, et al. Building nanoporous metal-organic frameworks “armor” on fibers for high-performance composite materials[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5590-5599. |
73 | Yu B, Wang F, Dong W, et al. Self-template synthesis of core-shell ZnO@ ZIF-8 nanospheres and the photocatalysis under UV irradiation[J]. Materials Letters, 2015, 156: 50-53. |
74 | Huang T Y, Kung C W, Liao Y T, et al. Enhanced charge collection in MOF‐525-PEDOT nanotube composites enable highly sensitive biosensing[J]. Advanced Science, 2017, 4(11): 1700261. |
75 | Zhang Y, Lin B, Sun Y, et al. Carbon nanotubes@ metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances, 2015, 5(72): 58100-58106. |
76 | Zhou H, Zhang J, Zhang J, et al. Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method[J]. Inorganic Chemistry Communications, 2015, 54: 54-56. |
77 | Zhou Y, Mao Z, Wang W, et al. In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@ GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28904-28916. |
78 | Jin Y, Zhao C, Sun Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Advances, 2016, 6(36): 30763-30768. |
79 | Zhang W, Tan Y, Gao Y, et al. Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications[J]. Journal of Applied Electrochemistry, 2016, 46(4): 441-450. |
80 | Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewadte Chemie International Edition, 2009, 48(26): 4739-4743. |
81 | Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American Chemical Society, 2012, 134(35): 14345-14348. |
82 | Wang Z, Wang B, Yang Y, et al. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20999-21004. |
83 | Choi K M, Kim D, Rungtaweevoranit B, et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J]. Journal of the American Chemical Society, 2016, 139(1): 356-362. |
84 | Deng Y, Deng C, Qi D, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J]. Advanced Materials, 2009, 21(13): 1377-1382. |
85 | Zhang N, Zhu B, Peng F, et al. Synthesis of metal-organic-framework related core-shell heterostructures and their application to ion enrichment in aqueous conditions[J]. Chemical Communications, 2014, 50(57): 7686-7689. |
86 | Chen Y, Xiong Z, Peng L, et al. Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16338-16347. |
87 | Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal- organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(49): 15118-15119. |
88 | Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step‐by‐step route[J]. Angewandte Chemie International Edition, 2009, 48(27): 5038-5041. |
89 | Chen X, Ding N, Zang H, et al. Fe3O4@ MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J]. Journal of Chromatography A, 2013, 1304: 241-245. |
90 | Ke F, Qiu L G, Yuan Y P, et al. Fe3O4@ MOF core-shell magnetic microspheres with a designable metal-organic framework shell[J]. Journal of Materials Chemistry, 2012, 22(19): 9497-9500. |
91 | Wu Y, Liu Q, Xie Y, et al. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides[J]. Talanta, 2018, 190: 298-312. |
92 | Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ ZIF-8 core-shell and hollow ZIF-8 microspheres[J]. Chemical Communications, 2012, 48(2): 221-223. |
93 | Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American Chemical Society, 2012, 134(35): 14345-14348.. |
94 | Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology, 2009, 20(45): 455602. |
95 | Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8: 14628. |
96 | Yang S J, Choi J Y, Chae H K, et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@ MOF-5 hybrid composite[J]. Chemistry of Materials, 2009, 21(9): 1893-1897. |
97 | Sohrabi S, Dehghanpour S, Ghalkhani M. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of Materials Science, 2018, 53(5): 3624-3639. |
98 | Kumar P, Vellingiri K, Kim K H, et al. Modern progress in metal- |
organic frameworks and their composites for diverse applications[J]. Microporous and Mesoporous Materials, 2017, 253: 251-265. | |
99 | Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2008, 20(11): 3617-3622. |
100 | Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A, 2015, 3(26): 13874-13883. |
101 | Zhao S H, Wu H H, Li Y L, et al. Core-shell assembly of carbon nanofiber and a 2D conductive metal-organic framework as a flexible free-standing membrane for high-performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6: 1824-1830. |
102 | Hong J, Park S J, Kim S. Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes[J]. Electrochimica Acta, 2019, 311: 62-71. |
103 | Li Z, Tan Y, Zhang W, et al. Flower-like Ni3(NO3)2(OH)4@ Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors[J]. Ionics, 2016, 22(12): 2545-2551. |
104 | Zhang S, Li X, Ding B, et al. A novel spitball-like Co3(NO3)2(OH)4@ Zr-MOF@ RGO anode material for sodium-ion storage[J]. Journal of Alloys and Compounds, 2020, 822: 153624. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[5] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[6] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[7] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[8] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[9] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[10] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[11] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[14] | 杨双桥, 韦宝杰, 徐大伟, 李莉, 王琪. 铝塑复合包装的应用及废弃物回收利用新技术[J]. 化工学报, 2022, 73(8): 3326-3337. |
[15] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 661
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||