化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 293-299.DOI: 10.11949/0438-1157.20191155
收稿日期:
2019-10-10
修回日期:
2019-11-04
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
田喆
作者简介:
郭晓雨(1994—),女,硕士研究生,基金资助:
Xiaoyu GUO(),Zhe TIAN(),Jide NIU,Jie ZHU
Received:
2019-10-10
Revised:
2019-11-04
Online:
2020-04-25
Published:
2020-04-25
Contact:
Zhe TIAN
摘要:
区域供冷系统主要分为源、网、用户三部分,其中管网不仅可以作为能量输送环节,还可以实现能量的储存,因此可以利用管网的储能效应实现制冷站与电网的互动。以广东惠州某园区制冷站为例,基于Modelica语言在Dymola平台上搭建了区域供冷系统。基于分时电价,应用管网的储热与延迟特性,提出三种控制策略以探讨热网在电力响应中的应用。仿真结果显示,在案例中管网储热维持室温的效果为0.31 h,利用管网储热能够使供冷系统节省6.4%的电耗和6.7%的电费,可见管网的虚拟储能效应是制冷站参与电网需求响应的重要资源。
中图分类号:
郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
Xiaoyu GUO, Zhe TIAN, Jide NIU, Jie ZHU. Study on energy storage of regional pipe network system based on time-of-use pricing[J]. CIESC Journal, 2020, 71(S1): 293-299.
电价时段 | 价格/ (CNY/(kW·h)) | 时段 |
---|---|---|
高峰 | 1.1609 | 14:00~17:00、19:00~22:00 |
平段 | 0.7036 | 8:00~14:00、17:00~19:00、22:00~24:00 |
低谷 | 0.3518 | 0:00~8:00 |
表1 惠州分时电价
Table 1 Time-of-use pricing of Huizhou
电价时段 | 价格/ (CNY/(kW·h)) | 时段 |
---|---|---|
高峰 | 1.1609 | 14:00~17:00、19:00~22:00 |
平段 | 0.7036 | 8:00~14:00、17:00~19:00、22:00~24:00 |
低谷 | 0.3518 | 0:00~8:00 |
设备名称 | 设备参数 | 数量 |
---|---|---|
冷水机组 | 冷冻水进出水温度:13/6℃;冷却水进出水温度32/37℃; 额定制冷量:4610 kW;COP:6.43 | 4台 |
冷冻水泵 | 额定流量2246.4 m3/h | 4台 |
冷却水泵 | 额定流量3145 m3/h | 4台 |
冷却塔 | 额定功率38 kW | 4台 |
表2 案例供冷系统设备参数
Table 2 Information of cooling system equipment
设备名称 | 设备参数 | 数量 |
---|---|---|
冷水机组 | 冷冻水进出水温度:13/6℃;冷却水进出水温度32/37℃; 额定制冷量:4610 kW;COP:6.43 | 4台 |
冷冻水泵 | 额定流量2246.4 m3/h | 4台 |
冷却水泵 | 额定流量3145 m3/h | 4台 |
冷却塔 | 额定功率38 kW | 4台 |
1 | Glueck B. Simplified model for exploring dynamic reactions during the operation for network storage[J]. Fernwaerme International, 1983, 12(3): 139-151. |
2 | 石兆玉. 供热系统运行调节与控制[M]. 北京: 清华大学出版社, 1994: 261-303. |
Shi Z Y. The Operation of the Heating System[M]. Beijing: Tsinghua University Press, 1994: 261-303. | |
3 | 秦冰, 江亿, 付林. 集中供热系统热动态特性研究综述[J]. 煤气与热力, 2003, (11): 694-697. |
Qin B, Jiang Y, Fu L. Summarization for research on dynamic performance of centralized heat-supply system[J]. Gas & Heat, 2003, (11): 694-697. | |
4 | 秦冰, 江亿, 付林, 等. 集中供热系统热动态特性的测试研究[J]. 煤气与热力, 2005, 25(11): 20-23. |
Qin B, Jiang Y, Fu L, et al. Study on test of dynamic thermal performance of centralized heat-supply system[J]. Gas & Heat, 2005, 25(11): 20-23. | |
5 | Pinson P, Nielsen T S, Nielsen H A, et al. Temperature prediction at critical points in district heating systems[J]. European Journal of Operational Research, 2009, 194(1): 163-176. |
6 | 陈路路. 基于负荷预测的集中供热系统能效研究[D]. 济南: 山东建筑大学, 2013. |
Chen L L. Study the energy efficiency of central heating systems based on the thermal load forecasting[D]. Jinan: Shandong Jianzhu University, 2013. | |
7 | Liu Z, Yu H, Tang Y, et al. A method to calculate energy station s output in community energy planning considering the attenuation and delay of pipe network[J]. Energy Procedia, 2017, 143: 216-222. |
8 | 刘志渊, 于航, 黄子硕. 考虑管网衰减延迟特性的分布式能源站实时出力计算[J]. 暖通空调, 2017, 47(4): 19-22. |
Liu Z Y, Yu H, Huang Z S. Prediction approach of hourly output of energy station in distributed energy system based on attenuation and delay features of pipe network[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 19-22. | |
9 | 刘海静, 潘毅群. 区域建筑群负荷预测及其平准化分析[J]. 暖通空调, 2017, 47(4): 14-18. |
Liu H J, Pan Y Q. Load prediction and leveling analysis for community buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 14-18. | |
10 | 陈长明. 城市供热系统二级网建模与动态特性分析[D]. 杭州: 浙江大学, 2017. |
Chen C M. Urban heating system of the secondary network modeling and dynamic analysis[D]. Hangzhou: Zhejiang University, 2017. | |
11 | 靳超. 集中供热系统储热及热负荷预测的动态模型研究[D]. 北京: 华北电力大学, 2017. |
Jin C. Study on the capacity of central heating and electric heating based on thermal scheduling to consume wind power [D]. Beijing: North China Electric Power University, 2017. | |
12 | Chua K J, Chou S K, Yang W M, et al. Achieving better energy-efficient air conditioning—a review of technologies and strategies[J]. Appl. Energy, 2013, 104: 87-104. |
13 | Gelazanskas L, Gamage K A A. Demand side management in smart grid: a review and proposals for future direction[J]. Sustainable Cities and Society, 2014, 11: 22-30. |
14 | 崔强, 王秀丽, 刘祖永. 市场环境下计及储能电站运行的联动电价研究及其效益分析[J]. 中国电机工程学报, 2013, 33(13): 62-68. |
Cui Q, Wang X L, Liu Z Y. Study on linkage electricity price and benefit analysis considering energy storage station operation in market environment[J]. Proceedings of the CSEE, 2013, 33(13): 62-68. | |
15 | Aghaei J, Alizadeh M I. Demand response in smart electricity grids equipped with renewable energy sources: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 18: 64-72. |
16 | 任博强, 彭鸣鸿, 蒋传文, 等. 计及风电成本的电力系统短期经济调度建模[J]. 电力系统保护与控制, 2010, 39(5): 37-72. |
Ren B Q, Peng M H, Jiang C W, et al. Short-term economic dispatch of power system modeling considering the cost of wind power[J]. Power System Protection and Control, 2010, 39(5): 37-72. | |
17 | 何蕾. 基于需求侧综合响应的热电联供型微网运行优化[J]. 电测与仪表, 2018, 55(7): 53-58. |
He L. Optimal operation of combined heat and power micro-grid based on integrated demand response[J]. Electrical Measurement & Instrumentation, 2018, 55(7): 53-58. | |
18 | 吕泉, 王海霞, 陈天佑, 等. 考虑风电不确定性的热电厂蓄热罐运行策略[J]. 电力系统自动化, 2015, (14): 23-29. |
Lyu Q, Wang H X, Chen T Y, et al. Operation strategies of heat accumulator in combined heat and power plant with uncertain wind power[J]. Automation of Electric Power Systems, 2015, (14): 23-29. | |
19 | 都健, 杨坡, 刘琳琳, 等. 带有热储罐的间歇过程换热网络综合[J]. 化工学报, 2013, 64(12): 4325-4329. |
Du J, Yang P, Liu L L, et al. Heat exchanger network synthesis for batch processes involving heat storages[J]. CIESC Journal, 2013, 64(12): 4325-4329. | |
20 | Zheng C Y, Wu J Y, Zhai X Q, et al. A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank[J]. International Journal of Electrical Power&Energy Systems, 2017, 85: 117-129. |
21 | Cox S J, Kim D, Cho H, et al. Real time optimal control of district cooling system with thermal energy storage using neural networks[J]. Applied Energy, 2019, 238: 466-480. |
22 | 张琦, 马家琳, 高金彤, 等. 钢铁企业煤气-蒸汽-电力系统耦合优化及应用[J]. 化工学报, 2018, 69(7): 3149-3158. |
Zhang Q, Ma J L, Gao J T, et al. Coupled optimization modeling and application of fuel gas-steam-power system in integrated iron and steel works[J]. CIESC Journal, 2018, 69(7): 3149-3158. | |
23 | 苏新霞, 周璇卿. 储能应用于需求侧响应的商业模式[J]. 科技与创新, 2017, (19): 5-6. |
Su X X, Zhou X Q. Energy storage used in a demand-side response business model[J]. Science and Technology & Innovation, 2017, (19): 5-6. | |
24 | 邵世圻, 戴赛, 胡林献, 等. 计及热网特性的电热联合系统调度方法[J]. 电力系统保护与控制, 2018, 46(10): 24-30. |
Shao S Q, Dai S, Hu L X, et al. Research on heat-electricity combined scheduling method considering the characteristics of the heating network[J]. Power System Protection and Control, 2018, 46(10): 24-30. | |
25 | Tang R, Wang S W, Shan K, et al. Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting[J]. Energy, 2018, 151: 771-781. |
26 | Tang R, Wang S W, Yan C C, et al. A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids[J]. Automation in Construction, 2018, 87: 74-83. |
27 | Sinha S, Chandel S S. Review of software tools for hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 192-205. |
28 | He X, Chen S Q, Lu X L. Simplified model of HVAC load prediction for urban building districts[J]. Procedia Engineering, 2015, 121: 167-174. |
29 | 毕庆生, 李邓超, 朱侃, 等. 基于供热系统热惯性供热机组短时深度参与电网调峰及风电消纳研究[J]. 热能动力工程, 2018, 33(9): 72-78. |
Bi Q S, Li D C, Zhu K, et al. In-depth grid power peak regulation with heating unit in wind power consumption based on thermal inertia characteristics [J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(9): 72-78. | |
30 | Hägg R. Dynamic simulation of district heating networks in dymola[D]. Lund: Lund University, 2016. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[7] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[8] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[9] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[10] | 周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
[11] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[12] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[13] | 戚子豪, 钟文琪, 陈曦, 周冠文, 赵小亮, 辛美静, 陈翼, 朱永长. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
[14] | 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657. |
[15] | 高学金, 何紫鹤, 高慧慧, 齐咏生. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测[J]. 化工学报, 2022, 73(3): 1300-1314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||