化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3166-3173.doi: 10.11949/0438-1157.20211842
Taoyan ZHAO1(),Jiangtao CAO1,Ping LI2,Lin FENG1,Yu SHANG3
摘要:
环己烷无催化氧化过程具有非线性、多变量耦合、大时滞等特点,使用常规比例积分微分(PID)控制方案无法达到理想的控制性能。提出了一种区间二型模糊免疫PID控制器,其本质上是一种基于免疫PID的非线性控制器,利用区间二型模糊逻辑系统来逼近免疫反馈律中的非线性函数,以提升控制器处理和逼近复杂不确定非线性系统的能力。将所提出的控制器应用于环己烷无催化氧化温度控制系统,仿真结果表明该方法是有效的。
中图分类号:
1 | Wen Y, Potter O E, Sridhar T. Uncatalysed oxidation of cyclohexane in a continuous reactor[J]. Chemical Engineering Science, 1997, 52(24): 4593-4605. |
2 | 李秀喜, 曹丽琦, 王兴. 环己烷氧化生产环己酮过程建模与参数分析[J]. 清华大学学报(自然科学版), 2018, 58(5): 523-528. |
Li X X, Cao L Q, Wang X. Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 523-528. | |
3 | 郑婷. 基于CFD的环己烷无催化氧化反应过程工况分析[D]. 广州: 华南理工大学, 2020. |
Zheng T. Analysis of operating conditions of cyclohexane non-catalytic oxidation process by CFD[D]. Guangzhou: South China University of Technology, 2020. | |
4 | 曹丽琦. 环己烷无催化氧化反应过程流体动力学模拟与工况分析[D]. 广州: 华南理工大学, 2018. |
Cao L Q. Modeling hydrodynamics of uncatalysed oxidation of cyclohexane and analysis of operating conditions[D]. Guanzhou: South China University of Technology, 2018. | |
5 | Dereli T, Baykasoglu A, Altun K, et al. Industrial applications of type-2 fuzzy sets and systems: a concise review[J]. Computers in Industry, 2011, 62(2): 125-137. |
6 | Castillo O, Melin P. A review on interval type-2 fuzzy logic applications in intelligent control[J]. Information Sciences, 2014, 279: 615-631. |
7 | 韩红桂, 刘峥, 乔俊飞. 基于区间二型模糊神经网络污水处理过程溶解氧浓度控制[J]. 化工学报, 2018, 69(3): 1182-1190. |
Han H G, Liu Z, Qiao J F. Control dissolved oxygen in wastewater treatment by interval type-2 fuzzy neural networks[J]. CIESC Journal, 2018, 69(3): 1182-1190. | |
8 | Zhang H K, Wang Y F, Wang D H, et al. Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system[J]. Information Sciences, 2020, 511: 1-17. |
9 | Moreno J E, Sanchez M A, Mendoza O, et al. Design of an interval Type-2 fuzzy model with justifiable uncertainty[J]. Information Sciences, 2020, 513: 206-221. |
10 | 王飞跃, 莫红. 关于二型模糊集合的一些基本问题[J]. 自动化学报, 2017, 43(7): 1114-1141. |
Wang F Y, Mo H. Some fundamental issues on type-2 fuzzy sets[J]. Acta Automatica Sinica, 2017, 43(7): 1114-1141. | |
11 | Liu X L, Lin Y C, Wan S P. New efficient algorithms for the centroid of an interval type-2 fuzzy set[J]. Information Sciences, 2021, 570: 468-486. |
12 | Zhao T Y, Li P, Cao J T. Study of interval type-2 fuzzy controller for the twin-tank water level system[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1102-1106. |
13 | Galluzzo M, Cosenza B. Control of the biodegradation of mixed wastes in a continuous bioreactor by a type-2 fuzzy logic controller[J]. Computers & Chemical Engineering, 2009, 33(9): 1475-1483. |
14 | 王永富, 马冰心, 柴天佑, 等. PEMFC空气供给系统的二型自适应模糊建模与过氧比控制[J]. 自动化学报, 2019, 45(5): 853-865. |
Wang Y F, Ma B X, Chai T Y, et al. Type-2 adaptive fuzzy modeling and oxygen excess ratio control for PEMFC air supply system[J]. Acta Automatica Sinica, 2019, 45(5): 853-865. | |
15 | Kumbasar T, Eksin I, Guzelkaya M, et al. Type-2 fuzzy model based controller design for neutralization processes[J]. ISA Transactions, 2012, 51(2): 277-287. |
16 | Miccio M, Cosenza B. Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers[J]. Journal of Process Control, 2014, 24(5): 475-484. |
17 | Han H G, Yang F F, Yang H Y, et al. Type-2 fuzzy broad learning controller for wastewater treatment process[J]. Neurocomputing, 2021, 459: 188-200. |
18 | 何青, 孟岳. 基于二型模糊变积分PID控制的BLDCM控制研究[J]. 控制工程, 2021, 28(8): 1691-1699. |
He Q, Meng Y. Research on BLDCM control based on type-2 fuzzy variable integration PID control[J]. Control Engineering of China, 2021, 28(8): 1691-1699. | |
19 | 李天, 曹江涛, 李平. 基于IT2FIM的乙烯裂解炉温度控制方法研究[J]. 计算机与应用化学, 2015, 32(6): 683-687. |
Li T, Cao J T, Li P. Research of ethylene cracking furnace temperature control method based on IT2FIM[J]. Computers and Applied Chemistry, 2015, 32(6): 683-687. | |
20 | Liao Q F, Sun D, Cai W J, et al. Type-1 and Type-2 effective Takagi-Sugeno fuzzy models for decentralized control of multi-input-multi-output processes[J]. Journal of Process Control, 2017, 52: 26-44. |
21 | 王玉勤, 许雪艳, 蒋全胜. 基于免疫PID算法的吊车-双摆系统控制设计[J]. 控制工程, 2016, 23(6): 895-900. |
Wang Y Q, Xu X Y, Jiang Q S. Control design of crane-double pendulum system based on immune PID algorithm[J]. Control Engineering of China, 2016, 23(6): 895-900. | |
22 | 李琦, 尚文斌. 改进免疫PID在双容水箱控制中的优化研究[J]. 计算机仿真, 2013, 30(10): 372-376. |
Li Q, Shang W B. Improved immune PID optimization in dual vessel water tank control[J]. Computer Simulation, 2013, 30(10): 372-376. | |
23 | 任重昕, 王伟. 免疫NPID控制器及其在热磨机料位控制系统的应用[J]. 东北林业大学学报, 2012, 40(4): 120-123. |
Ren Z X, Wang W. Immune nonlinear PID controller and its application to material level control of heat milling system[J]. Journal of Northeast Forestry University, 2012, 40(4): 120-123. | |
24 | Peng D G, Zhang H, Huang C H, et al. Immune PID cascade control based on neural network for main steam temperature system[C]//2011 9th World Congress on Intelligent Control and Automation. Taipei, Taiwan, China: IEEE, 2011: 480-484. |
25 | Wang H T, Jia H M. Study of immune PID controller for wood drying system[C]//2013 International Conference on Communication Systems and Network Technologies. Gwalior, India: IEEE, 2013: 827-831. |
26 | 陆海, 许必熙. 主汽温系统的区间Ⅱ型模糊免疫控制[J]. 锅炉技术, 2013, 44(3): 15-18. |
Lu H, Xu B X. Main steam temperature control based on interval type-2 fuzzy immune control[J]. Boiler Technology, 2013, 44(3): 15-18. | |
27 | Mittal K, Jain A, Vaisla K S, et al. A comprehensive review on type 2 fuzzy logic applications: past, present and future[J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103916. |
28 | Román-Flores H, Chalco-Cano Y, Figueroa-García J C. A note on defuzzification of type-2 fuzzy intervals[J]. Fuzzy Sets and Systems, 2020, 399: 133-145. |
29 | 伍冬睿, 曾志刚, 莫红, 等. 区间二型模糊集和模糊系统: 综述与展望[J]. 自动化学报, 2020, 46(8): 1539-1556. |
Wu D R, Zeng Z G, Mo H, et al. Interval type-2 fuzzy sets and systems: overview and outlook[J]. Acta Automatica Sinica, 2020, 46(8): 1539-1556. | |
30 | 赵涛岩, 李平, 曹江涛. 二型模糊系统降型算法综述[J]. 西南交通大学学报, 2019, 54(2): 436-444. |
Zhao T Y, Li P, Cao J T. Overview of type-reduction algorithms for type-2 fuzzy logic systems[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 436-444. | |
31 | Wu D R, Mendel J M. Enhanced Karnik-Mendel algorithms[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 923-934. |
[1] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[2] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[3] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[4] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[5] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[6] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[7] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[8] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[9] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[10] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[11] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
[12] | 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108. |
[13] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[14] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[15] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
|