化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3166-3173.doi: 10.11949/0438-1157.20211842

• 过程系统工程 • 上一篇    下一篇

区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用

赵涛岩1(),曹江涛1,李平2,冯琳1,商瑀3   

  1. 1.辽宁石油化工大学信息与控制工程学院,辽宁 抚顺 113001
    2.辽宁科技大学电子与信息工程学院,辽宁 鞍山 114051
    3.中国石油天然气股份有限公司抚顺石化分公司烯烃厂,辽宁 抚顺 113001
  • 收稿日期:2021-12-28 修回日期:2022-03-20 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 赵涛岩 E-mail:zhaotaoyan1986@126.com
  • 作者简介:赵涛岩(1986—),男,博士,讲师,zhaotaoyan1986@126.com
  • 基金资助:
    国家自然科学基金项目(61673199);辽宁省教育厅科学研究经费项目(L2019042);辽宁石油化工大学博士科研启动基金项目(2019XJJL-017)

Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane

Taoyan ZHAO1(),Jiangtao CAO1,Ping LI2,Lin FENG1,Yu SHANG3   

  1. 1.School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
    2.School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
    3.Olefin Plant of Fushun Petrochemical Branch of CNPC, Fushun 113001, Liaoning, China
  • Received:2021-12-28 Revised:2022-03-20 Published:2022-07-05 Online:2022-08-01
  • Contact: Taoyan ZHAO E-mail:zhaotaoyan1986@126.com

摘要:

环己烷无催化氧化过程具有非线性、多变量耦合、大时滞等特点,使用常规比例积分微分(PID)控制方案无法达到理想的控制性能。提出了一种区间二型模糊免疫PID控制器,其本质上是一种基于免疫PID的非线性控制器,利用区间二型模糊逻辑系统来逼近免疫反馈律中的非线性函数,以提升控制器处理和逼近复杂不确定非线性系统的能力。将所提出的控制器应用于环己烷无催化氧化温度控制系统,仿真结果表明该方法是有效的。

关键词: 免疫反馈, 区间二型模糊逻辑系统, PID算法, 过程控制, 优化设计, 环己烷无催化氧化

Abstract:

The non-catalytic oxidation of cyclohexane has the characteristics of nonlinearity, multi-variable coupling, large time delay, etc., and the ideal control performance cannot be achieved by using the conventional PID control scheme. In this paper, an interval type-2 fuzzy immune PID controller is proposed, which is essentially a nonlinear controller based on immune PID. The interval type-2 fuzzy logic system (IT2FLS) is used to approximate the nonlinear function in the immune feedback law, so as to improve the ability of the controller to deal with and approach complex uncertain nonlinear systems. Finally, the proposed controller is applied to temperature control system for uncatalysed oxidation of cyclohexane, and the simulation results show that the method is effective.

Key words: immune feedback, interval type-2 fuzzy logic system, PID algorithm, process control, optimal design, uncatalysed oxidation of cyclohexane

中图分类号: 

  • TP 173

图1

环己烷无催化氧化工艺流程图"

图2

IT2FIPID控制系统框图"

图3

区间二型模糊系统的结构框图"

图4

控制变量的隶属函数"

图5

控制变量变化的隶属函数"

图6

非线性函数的隶属函数"

图7

温度控制系统仿真结果"

图8

控制误差曲线"

图9

Kp的自整定结果"

表1

三种控制器的性能指标值"

控制器模糊规则数超调量σ/%IAE值ISE值
PID-37.451.9953×1044.4336×106
IT2FPID4912.308.2471×1032.3575×106
IT2FIPID403.7477×1041.1214×107
1 Wen Y, Potter O E, Sridhar T. Uncatalysed oxidation of cyclohexane in a continuous reactor[J]. Chemical Engineering Science, 1997, 52(24): 4593-4605.
2 李秀喜, 曹丽琦, 王兴. 环己烷氧化生产环己酮过程建模与参数分析[J]. 清华大学学报(自然科学版), 2018, 58(5): 523-528.
Li X X, Cao L Q, Wang X. Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 523-528.
3 郑婷. 基于CFD的环己烷无催化氧化反应过程工况分析[D]. 广州: 华南理工大学, 2020.
Zheng T. Analysis of operating conditions of cyclohexane non-catalytic oxidation process by CFD[D]. Guangzhou: South China University of Technology, 2020.
4 曹丽琦. 环己烷无催化氧化反应过程流体动力学模拟与工况分析[D]. 广州: 华南理工大学, 2018.
Cao L Q. Modeling hydrodynamics of uncatalysed oxidation of cyclohexane and analysis of operating conditions[D]. Guanzhou: South China University of Technology, 2018.
5 Dereli T, Baykasoglu A, Altun K, et al. Industrial applications of type-2 fuzzy sets and systems: a concise review[J]. Computers in Industry, 2011, 62(2): 125-137.
6 Castillo O, Melin P. A review on interval type-2 fuzzy logic applications in intelligent control[J]. Information Sciences, 2014, 279: 615-631.
7 韩红桂, 刘峥, 乔俊飞. 基于区间二型模糊神经网络污水处理过程溶解氧浓度控制[J]. 化工学报, 2018, 69(3): 1182-1190.
Han H G, Liu Z, Qiao J F. Control dissolved oxygen in wastewater treatment by interval type-2 fuzzy neural networks[J]. CIESC Journal, 2018, 69(3): 1182-1190.
8 Zhang H K, Wang Y F, Wang D H, et al. Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system[J]. Information Sciences, 2020, 511: 1-17.
9 Moreno J E, Sanchez M A, Mendoza O, et al. Design of an interval Type-2 fuzzy model with justifiable uncertainty[J]. Information Sciences, 2020, 513: 206-221.
10 王飞跃, 莫红. 关于二型模糊集合的一些基本问题[J]. 自动化学报, 2017, 43(7): 1114-1141.
Wang F Y, Mo H. Some fundamental issues on type-2 fuzzy sets[J]. Acta Automatica Sinica, 2017, 43(7): 1114-1141.
11 Liu X L, Lin Y C, Wan S P. New efficient algorithms for the centroid of an interval type-2 fuzzy set[J]. Information Sciences, 2021, 570: 468-486.
12 Zhao T Y, Li P, Cao J T. Study of interval type-2 fuzzy controller for the twin-tank water level system[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1102-1106.
13 Galluzzo M, Cosenza B. Control of the biodegradation of mixed wastes in a continuous bioreactor by a type-2 fuzzy logic controller[J]. Computers & Chemical Engineering, 2009, 33(9): 1475-1483.
14 王永富, 马冰心, 柴天佑, 等. PEMFC空气供给系统的二型自适应模糊建模与过氧比控制[J]. 自动化学报, 2019, 45(5): 853-865.
Wang Y F, Ma B X, Chai T Y, et al. Type-2 adaptive fuzzy modeling and oxygen excess ratio control for PEMFC air supply system[J]. Acta Automatica Sinica, 2019, 45(5): 853-865.
15 Kumbasar T, Eksin I, Guzelkaya M, et al. Type-2 fuzzy model based controller design for neutralization processes[J]. ISA Transactions, 2012, 51(2): 277-287.
16 Miccio M, Cosenza B. Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers[J]. Journal of Process Control, 2014, 24(5): 475-484.
17 Han H G, Yang F F, Yang H Y, et al. Type-2 fuzzy broad learning controller for wastewater treatment process[J]. Neurocomputing, 2021, 459: 188-200.
18 何青, 孟岳. 基于二型模糊变积分PID控制的BLDCM控制研究[J]. 控制工程, 2021, 28(8): 1691-1699.
He Q, Meng Y. Research on BLDCM control based on type-2 fuzzy variable integration PID control[J]. Control Engineering of China, 2021, 28(8): 1691-1699.
19 李天, 曹江涛, 李平. 基于IT2FIM的乙烯裂解炉温度控制方法研究[J]. 计算机与应用化学, 2015, 32(6): 683-687.
Li T, Cao J T, Li P. Research of ethylene cracking furnace temperature control method based on IT2FIM[J]. Computers and Applied Chemistry, 2015, 32(6): 683-687.
20 Liao Q F, Sun D, Cai W J, et al. Type-1 and Type-2 effective Takagi-Sugeno fuzzy models for decentralized control of multi-input-multi-output processes[J]. Journal of Process Control, 2017, 52: 26-44.
21 王玉勤, 许雪艳, 蒋全胜. 基于免疫PID算法的吊车-双摆系统控制设计[J]. 控制工程, 2016, 23(6): 895-900.
Wang Y Q, Xu X Y, Jiang Q S. Control design of crane-double pendulum system based on immune PID algorithm[J]. Control Engineering of China, 2016, 23(6): 895-900.
22 李琦, 尚文斌. 改进免疫PID在双容水箱控制中的优化研究[J]. 计算机仿真, 2013, 30(10): 372-376.
Li Q, Shang W B. Improved immune PID optimization in dual vessel water tank control[J]. Computer Simulation, 2013, 30(10): 372-376.
23 任重昕, 王伟. 免疫NPID控制器及其在热磨机料位控制系统的应用[J]. 东北林业大学学报, 2012, 40(4): 120-123.
Ren Z X, Wang W. Immune nonlinear PID controller and its application to material level control of heat milling system[J]. Journal of Northeast Forestry University, 2012, 40(4): 120-123.
24 Peng D G, Zhang H, Huang C H, et al. Immune PID cascade control based on neural network for main steam temperature system[C]//2011 9th World Congress on Intelligent Control and Automation. Taipei, Taiwan, China: IEEE, 2011: 480-484.
25 Wang H T, Jia H M. Study of immune PID controller for wood drying system[C]//2013 International Conference on Communication Systems and Network Technologies. Gwalior, India: IEEE, 2013: 827-831.
26 陆海, 许必熙. 主汽温系统的区间Ⅱ型模糊免疫控制[J]. 锅炉技术, 2013, 44(3): 15-18.
Lu H, Xu B X. Main steam temperature control based on interval type-2 fuzzy immune control[J]. Boiler Technology, 2013, 44(3): 15-18.
27 Mittal K, Jain A, Vaisla K S, et al. A comprehensive review on type 2 fuzzy logic applications: past, present and future[J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103916.
28 Román-Flores H, Chalco-Cano Y, Figueroa-García J C. A note on defuzzification of type-2 fuzzy intervals[J]. Fuzzy Sets and Systems, 2020, 399: 133-145.
29 伍冬睿, 曾志刚, 莫红, 等. 区间二型模糊集和模糊系统: 综述与展望[J]. 自动化学报, 2020, 46(8): 1539-1556.
Wu D R, Zeng Z G, Mo H, et al. Interval type-2 fuzzy sets and systems: overview and outlook[J]. Acta Automatica Sinica, 2020, 46(8): 1539-1556.
30 赵涛岩, 李平, 曹江涛. 二型模糊系统降型算法综述[J]. 西南交通大学学报, 2019, 54(2): 436-444.
Zhao T Y, Li P, Cao J T. Overview of type-reduction algorithms for type-2 fuzzy logic systems[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 436-444.
31 Wu D R, Mendel J M. Enhanced Karnik-Mendel algorithms[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 923-934.
[1] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[2] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[3] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[4] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[5] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[6] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[7] 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817.
[8] 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204.
[9] 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227.
[10] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[11] 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
[12] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[13] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[14] 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119.
[15] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!