化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5706-5714.DOI: 10.11949/0438-1157.20200402
收稿日期:
2020-04-16
修回日期:
2020-05-25
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
栾小丽
作者简介:
平晓静(1997—),女,硕士研究生,基金资助:
PING Xiaojing(),ZHAO Shunyi,LUAN Xiaoli(),LIU Fei
Received:
2020-04-16
Revised:
2020-05-25
Online:
2020-12-05
Published:
2020-12-05
Contact:
LUAN Xiaoli
摘要:
有机硅单体分馏过程需分离的物质多且分离技术要求高,是有机硅单体生产过程中能耗较高的单元之一。能耗模型的建立对分馏过程的生产优化有着重要的意义。虽然分馏过程中各提纯单元的塔器设备型号、操作条件存在差异,但由于各提纯单元存在相似性,如何充分利用这些相似性进行能耗建模,从而减少建模过程中对数据量、质的要求是要解决的问题。通过引入迁移学习算法,增大源单元和目标单元数据域的相似性,实现不同数据域的知识传递,充分利用现有数据中包含的知识,建立新的能耗模型。以某有机硅企业采集的现场数据进行算法验证,结果显示,当训练样本量不足时,迁移学习可以有效提升模型性能,从而验证了该算法的有效性与实际应用价值。
中图分类号:
平晓静,赵顺毅,栾小丽,刘飞. 基于迁移学习的有机硅单体分馏过程能耗建模[J]. 化工学报, 2020, 71(12): 5706-5714.
PING Xiaojing,ZHAO Shunyi,LUAN Xiaoli,LIU Fei. Modeling of energy consumption in organosilicon monomer fractionation process based on transfer learning[J]. CIESC Journal, 2020, 71(12): 5706-5714.
回归算法 | 性能指标 | |
---|---|---|
RMSE/% | MAPE/% | |
PLS | 3.6399 | 0.4146 |
BP | 4.0994 | 0.5689 |
RBF | 6.2147 | 0.6185 |
表1 三种回归模型的RMSE和MAPE
Table 1 RMSE and MAPE of PLS, BP and RBF
回归算法 | 性能指标 | |
---|---|---|
RMSE/% | MAPE/% | |
PLS | 3.6399 | 0.4146 |
BP | 4.0994 | 0.5689 |
RBF | 6.2147 | 0.6185 |
三甲塔样本比例 | MMD距离 | |
---|---|---|
迁移算法前 | 迁移算法后 | |
0.05 0.1 | 0.9480 0.9855 | 0.3494 0.3817 |
0.2 | 0.9730 | 0.3512 |
0.3 0.4 0.5 0.6 0.7 0.8 | 1.0025 1.0071 0.9951 0.9935 0.9963 0.9874 | 0.4087 0.2561 0.2337 0.2248 0.2199 0.4398 |
表2 源域和目标域的MMD距离
Table 2 MMD distance of source and target domains
三甲塔样本比例 | MMD距离 | |
---|---|---|
迁移算法前 | 迁移算法后 | |
0.05 0.1 | 0.9480 0.9855 | 0.3494 0.3817 |
0.2 | 0.9730 | 0.3512 |
0.3 0.4 0.5 0.6 0.7 0.8 | 1.0025 1.0071 0.9951 0.9935 0.9963 0.9874 | 0.4087 0.2561 0.2337 0.2248 0.2199 0.4398 |
1 | Eduok U, Faye O, Szpunar J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials[J]. Progress in Organic Coatings, 2017, 111: 124-163. |
2 | Zhang S. Application of mathematical modeling in optimization of synthesis process parameters of methylchlorosilane[J]. Journal of Photonic Materials and Technology, 2018, 4(2): 49-54. |
3 | Luo W, Wang G, Wang J, et al. Effect and role of Al addition in the direct synthesis reaction of methylchlorosilane monomer[J]. Journal of Chemical Engineering of Chinese Universities, 2005, 19(6): 803-807. |
4 | 傅积赉. 对直接法合成甲基氯硅烷生产工艺复杂性的认识与建议[J]. 有机硅材料, 2004, 18(1): 1-4. |
Fu J L. Acquaintance & suggestions on complexity of production technology on direct synthesis of methylchlorosilane[J]. Silicone Material, 2004, 18(1): 1-4. | |
5 | Hitsov I, de Sitter K, Dotremont C, et al. Economic modelling and model-based process optimization of membrane distillation[J]. Desalination, 2018, 436: 125-143. |
6 | Eleiwi F, Ghaffour N, Alsaadi A S, et al. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process[J]. Desalination, 2016, 384: 1-11. |
7 | Ruiz A, Blanco C, Ozkan L. Modeling of reactive batch distillation processes for control[J]. Computers and Chemical Engineering, 2019, 121: 86-98. |
8 | 李凤莲, 任瑞平, 邹雪梅. 化工精馏高效节能技术开发及应用[J]. 化工管理, 2014, (18): 162. |
Li F L, Ren R P, Zou X M. Development and application of high efficiency and energy saving technology for chemical distillation[J]. Chemical Enterprise Management, 2014, (18): 162. | |
9 | 何小阳, 李健, 闵力, 等. 精馏塔的机理-神经网络混合建模[J]. 控制工程, 2009, 16(2): 94-96. |
He X Y, Li J, Min L, et al. Modeling of distillation column based on hybrid neural network and prior knowledge[J]. Control Engineering of China, 2009, 16(2): 94-96. | |
10 | 于丙芹, 张贝克, 孙军, 等. 精馏过程动态仿真建模[J]. 计算机与应用化学, 2011, 28(9): 1219-1223. |
Yu B Q, Zhang B K, Sun J, et al. Dynamic simulation and modeling of distillation process[J]. Computers and Applied Chemistry, 2011, 28(9): 1219-1223. | |
11 | Pino-Mejías R, Pérez-Fargallo A, Rubio-Bellido C, et al. Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions[J]. Energy, 2017, 118: 24-36. |
12 | Wang Z, Shao C, Zhu L. Soft-sensing modeling and intelligent optimal control strategy for distillation yield rate of atmospheric distillation oil refining process[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1113-1124. |
13 | Brahim A, Abderafi S, Bounahmidi T. Optimization of the distillation column of petroleum fractions using ANN method[C]//2018 IEEE 6th International Renewable and Sustainable Energy Conference (IRSEC), 2018: 1-6. |
14 | Ibrahim D, Jobson M, Li J, et al. Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine[J]. Chemical Engineering Research and Design, 2018, 134: 212-225. |
15 | Osuolale F N, Zhang J. Energy efficiency optimisation for distillation column using artificial neural network models[J]. Energy, 2016, 106: 562-578. |
16 | Osuolale F, Zhang J. Exergetic Optimisation of Atmospheric and Vacuum Distillation System based on Bootstrap Aggregated Neural Network Models[M]. Switzerland: Springer, Cham, 2018: 1033-1046. |
17 | Chan L, Chen J. Economic model predictive control of distillation startup based on probabilistic approach[J]. Chemical Engineering Science, 2018, 186: 26-35. |
18 | Pan S, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. |
19 | Wang X, Ren J, Liu S. Distribution adaptation and manifold alignment for complex processes fault diagnosis[J]. Knowledge-Based Systems, 2018, 156: 100-112. |
20 | Yang C, Chen B, Wang Z, et al. Transfer learning soft sensor for product quality prediction in multi-grade processes[C]//2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS). 2019: 1148-1153. |
21 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
22 | 周书恒, 杜文莉. 基于迁移学习的裂解炉产率建模[J]. 化工学报, 2014, 65(12): 4921-4928. |
Zhou S H, Du W L. Modeling of ethylene cracking furnace yields based on transfer learning[J]. CIESC Journal, 2014, 65(12): 4921-4928. | |
23 | Han T, Liu C, Yang W, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. |
24 | Lu J, Yao Y, Gao F. Model migration for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2009, 48(21): 9603-9610. |
25 | Lu J, Gao F. Process modeling based on process similarity[J]. Industrial & Engineering Chemistry Research, 2008, 47(6): 1967-1974. |
26 | 孙建阳, 孔令启, 张传国, 等. 国内甲基氯硅烷分离技术现状及改进方法[J].有机硅材料, 2015, 29(1): 47-51. |
Sun J Y, Kong L Q, Zhang C G, et al. Status of separation technology of methyl chlorosilane and its improvements in China[J]. Silicone Material, 2015, 29(1): 47-51. | |
27 | 段继海, 王文建, 范军领, 等. 有机硅单体分离流程的模拟与优化[J]. 化学工程, 2012, 40(8): 69-73. |
Duan J H, Wang W J, Fan J L, et al. Simulation and optimization of organosilicon monomer separation processes[J]. Chemical Engineering(China), 2012, 40(8): 69-73. | |
28 | 高维平, 杨莹, 刘学线, 等. 化工精馏高效节能技术开发及应用[J]. 计算机与应用化学, 2008, 25(12): 1531-1536. |
Gao W P, Yang Y, Liu X X, et al. Development and application of high efficiency energy-saving distillation technology[J]. Computers and Applied Chemistry, 2008, 25(12): 1531-1536. | |
29 | 李英劼. 化工生产中降低精馏技术能耗的思路[J]. 石油和化工设备, 2011, 14(1): 58-60. |
Li Y J. Chemical Engineering produces inside lowers the way of thinking that tower consume[J]. Petro & Chemical Equipment, 2011, 14(1): 58-60. | |
30 | 黄克谨, 钱积新, 孙优贤, 等. 一种改进的多元精馏塔动态模型[J]. 化工学报, 1992, 43(4): 482-488. |
Huang K J, Qian J X, Sun Y X, et al. An improved dynamic model of multicomponent distillation column[J]. Journal of Chemical Industry and Engineering(China), 1992, 43(4): 482-488. | |
31 | Hong J, Yin J, Huang Y, et al. TrSVM: a transfer learning algorithm using domain similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 1823-1830. |
32 | 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42(2): 3-13. |
Liu Q, Qin S Z. Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42(2): 3-13. | |
33 | Alma Ö. Comparison of robust regression methods in linear regression [J]. International Journal of Contemporary Mathematical Sciences, 2011, 6(9): 409-421. |
34 | Borgwardt K, Gretton A, Rasch M, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57. |
35 | Pardoe D, Stone P. Boosting for regression transfer[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010: 863-870. |
36 | Khan M, Heisterkamp D. Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning[C]//2016 IEEE 23rd International Conference on Pattern Recognition (ICPR). 2016: 1560-1565. |
37 | Dai W, Yang Q, Xue G, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvalis Oregon. USA, 2007: 193-200. |
38 | Sarstedt M, Ringle C, Hair J. Partial Least Squares Structural Equation Modeling[M]. Springer International Publishing, 2017. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[10] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[11] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[12] | 王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[15] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||