化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1419-1432.DOI: 10.11949/0438-1157.20221553
杨灿1,2,3(), 孙雪琦2, 尚明华4, 张建4, 张香平2,3, 曾少娟2,3()
收稿日期:
2022-11-30
修回日期:
2023-03-08
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
曾少娟
作者简介:
杨灿(1998—),女,硕士研究生,yangcan2021@ipe.ac.cn
基金资助:
Can YANG1,2,3(), Xueqi SUN2, Minghua SHANG4, Jian ZHANG4, Xiangping ZHANG2,3, Shaojuan ZENG2,3()
Received:
2022-11-30
Revised:
2023-03-08
Online:
2023-04-05
Published:
2023-06-02
Contact:
Shaojuan ZENG
摘要:
全球工业化的迅速发展及人口增长使得化石燃料消耗不断增加,导致二氧化碳(CO2)排放量逐年递增,引发全球化气候问题。醇胺吸收法目前在工业CO2捕集应用最广泛,主要以单乙醇胺、甲基二乙醇胺等水溶液为吸收剂,存在溶剂损耗大、再生能耗高等问题,开发高效低能耗的新型吸收剂是实现CO2大规模捕集的关键。离子液体具有气体亲和性好、蒸气压低、结构性质可调等特点,其中相变离子液体体系因节能潜力大被认为是新一代CO2吸收剂,其吸收CO2后由均相变为互不相溶的液-液或液-固两相,再生时仅需对CO2富相加热处理,可有效减少吸收剂再生体积,降低再生能耗。重点总结近五年相变离子液体体系在CO2分离的研究现状和进展,对不同相变行为的液-液和液-固相变离子液体体系分类阐述和讨论,并对其发展趋势进行展望。
中图分类号:
杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432.
Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems[J]. CIESC Journal, 2023, 74(4): 1419-1432.
液-液相变离子液体体系 | 主吸收剂 | 相分离促进剂 | CO2吸收量 | 文献 |
---|---|---|---|---|
[BMIM][NTf2]-MEA-环丁砜 | MEA | [BMIM][NTf2]-环丁砜 | 2.86 mol/kg absorbent | [ |
[BMIM][BF4]-MEA-H2O | MEA | [BMIM][BF4] | 0.53 mol/mol MEA | [ |
[TETAH][Lys]-乙醇-H2O | [TETAH][Lys] | 乙醇 | 2.35 mol/mol IL | [ |
[DETAH][Triz]-1-丙醇-H2O | [DETAH][Triz] | 1-丙醇 | 1.71 mol/mol IL | [ |
[TETA][Br]-DEEA-H2O | [TETA][Br] | DEEA | — | [ |
[TETA][Br]-PMDETA-H2O | [TETA][Br] | PMDETA | 2.19 mol/mol IL | [ |
[TETA][BF4]-PMDETA-H2O | [TETA][BF4] | PMDETA | — | [ |
表1 用于CO2捕集的代表性液-液相变离子液体体系
Table 1 Representative liquid-liquid phase-change ionic liquid systems for CO2 capture
液-液相变离子液体体系 | 主吸收剂 | 相分离促进剂 | CO2吸收量 | 文献 |
---|---|---|---|---|
[BMIM][NTf2]-MEA-环丁砜 | MEA | [BMIM][NTf2]-环丁砜 | 2.86 mol/kg absorbent | [ |
[BMIM][BF4]-MEA-H2O | MEA | [BMIM][BF4] | 0.53 mol/mol MEA | [ |
[TETAH][Lys]-乙醇-H2O | [TETAH][Lys] | 乙醇 | 2.35 mol/mol IL | [ |
[DETAH][Triz]-1-丙醇-H2O | [DETAH][Triz] | 1-丙醇 | 1.71 mol/mol IL | [ |
[TETA][Br]-DEEA-H2O | [TETA][Br] | DEEA | — | [ |
[TETA][Br]-PMDETA-H2O | [TETA][Br] | PMDETA | 2.19 mol/mol IL | [ |
[TETA][BF4]-PMDETA-H2O | [TETA][BF4] | PMDETA | — | [ |
液-固相变离子液体体系 | 主吸收剂 | 相分离促进剂 | CO2吸收量 | 文献 |
---|---|---|---|---|
[HMIM][NTf2]-MEA | MEA | [HMIM][NTf2] | 0.5 mol/mol MEA | [ |
[EOHMIM][NTf2]-MEA | MEA | [EOHMIM][NTf2] | 0.5 mol/mol MEA | [ |
[C n MIM][NTf2]-DEA | DEA | [C n MIM][NTf2] | 0.5 mol/mol DEA | [ |
[HMIM][NTf2]-AMP | AMP | [HMIM][NTf2] | — | [ |
[EMIM][TfO]-MEA | MEA | [EMIM][TfO] | — | [ |
[EMIM][BF4]-MEA | MEA | [EMIM][BF4] | 0.51 mol/mol MEA | [ |
[BMIM][BF4]-MEA | MEA | [BMIM][BF4] | 0.52 mol/mol MEA | [ |
[TETA][BF4]-乙醇 | [TETA][BF4] | 乙醇 | — | [ |
[N1111][Gly]-乙醇 | [N1111][Gly] | 乙醇 | 0.85 mol/mol IL | [ |
[N1111][Gly]-1-丙醇 | [N1111][Gly] | 1-丙醇 | 0.90 mol/mol IL | [ |
[N1111][Gly]-DMEE | [N1111][Gly] | DMEE | 1.2 mol/mol IL | [ |
[DETAH][Br]-PEG200 | [DETAH][Br] | PEG200 | 1.18 mol/mol IL | [ |
[TETA][Br]-PEG200 | [TETA][Br] | PEG200 | — | [ |
表2 用于CO2捕集的代表性液-固相变离子液体体系
Table 2 Representative liquid-solid phase-change ionic liquid systems for CO2 capture
液-固相变离子液体体系 | 主吸收剂 | 相分离促进剂 | CO2吸收量 | 文献 |
---|---|---|---|---|
[HMIM][NTf2]-MEA | MEA | [HMIM][NTf2] | 0.5 mol/mol MEA | [ |
[EOHMIM][NTf2]-MEA | MEA | [EOHMIM][NTf2] | 0.5 mol/mol MEA | [ |
[C n MIM][NTf2]-DEA | DEA | [C n MIM][NTf2] | 0.5 mol/mol DEA | [ |
[HMIM][NTf2]-AMP | AMP | [HMIM][NTf2] | — | [ |
[EMIM][TfO]-MEA | MEA | [EMIM][TfO] | — | [ |
[EMIM][BF4]-MEA | MEA | [EMIM][BF4] | 0.51 mol/mol MEA | [ |
[BMIM][BF4]-MEA | MEA | [BMIM][BF4] | 0.52 mol/mol MEA | [ |
[TETA][BF4]-乙醇 | [TETA][BF4] | 乙醇 | — | [ |
[N1111][Gly]-乙醇 | [N1111][Gly] | 乙醇 | 0.85 mol/mol IL | [ |
[N1111][Gly]-1-丙醇 | [N1111][Gly] | 1-丙醇 | 0.90 mol/mol IL | [ |
[N1111][Gly]-DMEE | [N1111][Gly] | DMEE | 1.2 mol/mol IL | [ |
[DETAH][Br]-PEG200 | [DETAH][Br] | PEG200 | 1.18 mol/mol IL | [ |
[TETA][Br]-PEG200 | [TETA][Br] | PEG200 | — | [ |
图4 [N1111][Gly]-乙醇(质量比1∶4)吸收CO2过程中的相变现象[67]
Fig.4 Phase-change phenomenon in the process of CO2 absorption into [N1111][Gly]-ethanol (mass ratio 1∶4)[67]
图6 (a) [DETAH][Br]-PEG200体系吸收CO2实时变化;(b) 反应后饱和吸收剂的两相分离[69]
Fig.6 (a) Real-time change of CO2 absorption in the [DETAH][Br]-PEG200 systems; (b) Biphasic separation of the saturated absorbent after reaction[69]
图8 (a) [P2222][BnIm]吸收过程中的相变;(b) [P2222][BnIm]-CO2等摩尔反应示意图[84]
Fig.8 (a) Phase-change of [P2222][BnIm] during absorption; (b) Schematic of equimolar [P2222][BnIm]-CO2 reaction[84]
1 | Figueres C, Le Quéré C, Mahindra A, et al. Emissions are still rising: ramp up the cuts[J]. Nature, 2018, 564(7734): 27-30. |
2 | Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1704-1709. |
3 | Abdelkareem M A, Elsaid K, Wilberforce T, et al. Environmental aspects of fuel cells: a review[J]. Science of the Total Environment, 2021, 752: 141803. |
4 | Rogelj J, den Elzen M, Höhne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534(7609): 631-639. |
5 | Fawzy S, Osman A I, Doran J, et al. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 2069-2094. |
6 | Regufe M J, Pereira A, Ferreira A F P, et al. Current developments of carbon capture storage and/or utilization-looking for net-zero emissions defined in the Paris Agreement[J]. Energies, 2021, 14(9): 2406. |
7 | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
8 | Zhong C, Dong F L, Geng Y, et al. Toward carbon neutrality: the transition of the coal industrial chain in China[J]. Frontiers in Environmental Science, 2022, 10: 962257. |
9 | Xie Y C, Qi J G, Zhang R, et al. Toward a carbon-neutral state: a carbon-energy-water nexus perspective of China’s coal power industry[J]. Energies, 2022, 15(12): 4466. |
10 | Chen S Y, Liu J F, Zhang Q, et al. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112537. |
11 | Sreedhar I, Nahar T, Venugopal A, et al. Carbon capture by absorption—path covered and ahead[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1080-1107. |
12 | Song C F, Liu Q L, Deng S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 265-278. |
13 | Wu Y X, Xu J H, Mumford K, et al. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids[J]. Green Chemical Engineering, 2020, 1(1): 16-32. |
14 | Bello A, Idem R O. Pathways for the formation of products of the oxidative degradation of CO2-loaded concentrated aqueous monoethanolamine solutions during CO2 absorption from flue gases[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 945-969. |
15 | Zhao Y L, Jin B, Luo X, et al. Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production[J]. Applied Energy, 2021, 288: 116614. |
16 | Shi H C, Zheng L N, Huang M, et al. Catalytic-CO2-desorption studies of DEA and DEA-MEA blended solutions with the aid of lewis and Brønsted acids[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11505-11516. |
17 | Shi H W, Zhang X, Sundmacher K, et al. Model-based optimal design of phase change ionic liquids for efficient thermal energy storage[J]. Green Energy & Environment, 2021, 6(3): 392-404. |
18 | Peng L L, Shi M Z, Zhang X M, et al. Facilitated transport separation of CO2 and H2S by supported liquid membrane based on task-specific protic ionic liquids[J]. Green Chemical Engineering, 2022, 3(3): 259-266. |
19 | Liu Y R, Dai Z X, Zhang Z B, et al. Ionic liquids/deep eutectic solvents for CO2 capture: reviewing and evaluating[J]. Green Energy & Environment, 2021, 6(3): 314-328. |
20 | Wu Y X, Ding Y C, Xu J H, et al. Efficient fixation of CO2 into propylene carbonate with [BMIM]Br in a continuous-flow microreaction system[J]. Green Energy & Environment, 2021, 6(2): 291-297. |
21 | He Y Q, Li H, Qu C Y, et al. Recent understanding of solid-liquid friction in ionic liquids[J]. Green Chemical Engineering, 2021, 2(2): 145-157. |
22 | Wang C M, Luo X Y, Zhu X, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Advances, 2013, 3(36): 15518-15527. |
23 | Chiu L F, Liu H F, Li M H. Heat capacity of alkanolamines by differential scanning calorimetry[J]. Journal of Chemical and Engineering Data, 1999, 44(3): 631-636. |
24 | Blanchard L A, Dan H C, Beckman E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29. |
25 | Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
26 | Zhang Y, Yu P, Luo Y B. Absorption of CO2 by amino acid-functionalized and traditional dicationic ionic liquids: properties, Henry’s law constants and mechanisms[J]. Chemical Engineering Journal, 2013, 214: 355-363. |
27 | Yang Q W, Wang Z P, Bao Z B, et al. New insights into CO2 absorption mechanisms with amino-acid ionic liquids[J]. ChemSusChem, 2016, 9(8): 806-812. |
28 | Li S J, Zhao C J, Sun C, et al. Reaction mechanism and kinetics study of CO2 absorption into [C2OHmim][Lys][J]. Energy & Fuels, 2016, 30(10): 8535-8544. |
29 | Chen F F, Dong Y, Sang X Y, et al. Physicochemical properties and CO2 solubility of tetrabutylphosphonium carboxylate ionic liquids[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 605-610. |
30 | Chen F F, Huang K, Zhou Y, et al. Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angewandte Chemie-International Edition, 2016, 55(25): 7166-7170. |
31 | Oh S, Morales-Collazo O, Keller A N, et al. Cation-anion and anion-CO2 interactions in triethyl(octyl)phosphonium ionic liquids with aprotic heterocyclic anions (AHAs)[J]. The Journal of Physical Chemistry B, 2020, 124(40): 8877-8887. |
32 | Suo X, Yang Z Z, Fu Y Q, et al. CO2 chemisorption behavior of coordination-derived phenolate sorbents[J]. ChemSusChem, 2021, 14(14): 2854-2859. |
33 | Suo X, Fu Y Q, Do-Thanh C L, et al. CO2 chemisorption behavior in conjugated carbanion-derived ionic liquids via carboxylic acid formation[J]. Journal of the American Chemical Society, 2022, 144(47): 21658-21663. |
34 | Huang Y J, Cui G K, Zhao Y L, et al. Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J]. Angewandte Chemie-International Edition, 2017, 56(43): 13293-13297. |
35 | Lian S H, Song C F, Liu Q L, et al. Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization[J]. Journal of Environmental Sciences, 2021, 99: 281-295. |
36 | Iliuta I, Hasib-ur-Rahman M, Larachi F. CO2 absorption in diethanolamine/ionic liquid emulsions—chemical kinetics and mass transfer study[J]. Chemical Engineering Journal, 2014, 240: 16-23. |
37 | Yang J, Yu X H, An L, et al. CO2 capture with the absorbent of a mixed ionic liquid and amine solution considering the effects of SO2 and O2 [J]. Applied Energy, 2017, 194: 9-18. |
38 | Camper D, Bara J E, Gin D L, et al. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2 [J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8496-8498. |
39 | Zhuang Q, Clements B, Dai J Y, et al. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps[J]. International Journal of Greenhouse Gas Control, 2016, 52: 449-460. |
40 | 边阳阳, 申淑锋. 相变吸收剂捕集二氧化碳的研究进展[J]. 河北科技大学学报, 2017, 38(5): 460-468. |
Bian Y Y, Shen S F. Research progress in carbon dioxide capture using phase-change absorbents[J].Journal of Hebei University of Science and Technology, 2017, 38(5): 460-468. | |
41 | Jiang W F, Li X S, Gao G, et al. Advances in applications of ionic liquids for phase change CO2 capture[J]. Chemical Engineering Journal, 2022, 445: 136767. |
42 | Cheng J, Li Y N, Hu L Q, et al. Characterization of CO2 absorption and carbamate precipitate in phase-change N-methyl-1,3-diaminopropane/N,N-dimethylformamide solvent[J]. Energy & Fuels, 2017, 31(12): 13972-13978. |
43 | Kassim M A, Sairi N A, Yusoff R, et al. Evaluation of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-alkanolamine sulfolane-based system as solvent for absorption of carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 7992-8001. |
44 | 徐令君, Qi Yang, 王淑娟. [Bmim][BF4]/MEA混合水溶液吸收CO2的吸收性能与液液分相机理[J]. 化工学报, 2018, 69(12): 5112-5119. |
Xu L J, Qi Y, Wang S J. Absorption performance and stratification mechanism of biphasic CO2 absorbent [Bmim][BF 4]/MEA aqueous mixtures[J]. CIESC Journal, 2018, 69(12): 5112-5119. | |
45 | Huang Q S, Jing G H, Zhou X B, et al. A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: high efficiency and regenerability[J]. Journal of CO2 Utilization, 2018, 25: 22-30. |
46 | Zhan X H, Lv B H, Yang K X, et al. Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: high-efficiency and energy saving[J]. Environmental Science & Technology, 2020, 54(10): 6281-6288. |
47 | Zhou H C, Xu X, Chen X C, et al. Novel ionic liquids phase change solvents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2020, 98: 103068. |
48 | Cachaza A, Gómez-Díaz D, Montáns A, et al. Carbon dioxide chemical absorption by solvents based on diamine and amines blend[J]. AIChE Journal, 2018, 64(7): 2702-2710. |
49 | Kim Y E, Park J H, Yun S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1486-1492. |
50 | Aronu U E, Gondal S, Hessen E T, et al. Solubility of CO2 in 15, 30, 45 and 60%(mass) MEA from 40 to 120℃ and model representation using the extended UNIQUAC framework[J]. Chemical Engineering Science, 2011, 66(24): 6393-6406. |
51 | Li M H, Chang B C. Solubilities of carbon-dioxide in water+monoethanolamine+2-amino-2-methyl-1-propanol[J]. Journal of Chemical and Engineering Data, 1994, 39(3): 448-452. |
52 | Park S B, Lee H E. Vapor-liquid equilibria for the binary monoethanolamine+water and monoethanolamine+ethanol systems[J]. Korean Journal of Chemical Engineering, 1997, 14(2): 146-148. |
53 | Xu Z C, Wang S J, Qi G J, et al. Vapor liquid equilibria and heat of absorption of CO2 in aqueous 2-(diethylamino)-ethanol solutions[J]. International Journal of Greenhouse Gas Control, 2014, 29: 92-103. |
54 | 徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J].化工学报, 2018, 69(9): 3879-3886. |
Xu L J, Wang S J. Vapor liquid equilibria and heat of desorption of CO2 in aqueous mixture of [Bmim][BF 4] and MEA[J].CIESC Journal, 2018, 69(9): 3879-3886. | |
55 | Zhang F, Fang C G, Wu Y T, et al. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA[J]. Chemical Engineering Journal, 2010, 160(2): 691-697. |
56 | Zhang F, Ma J W, Zhou Z, et al. Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions[J]. Chemical Engineering Journal, 2012, 181: 222-228. |
57 | Zhou X B, Liu F, Lv B H, et al. Evaluation of the novel biphasic solvents for CO2 capture: performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60: 120-128. |
58 | Chen S M, Chen S Y, Zhang Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. |
59 | Jing G H, Liu F, Lv B H, et al. Novel ternary absorbent: dibutylamine aqueous-organic solution for CO2 capture[J]. Energy & Fuels, 2017, 31(11): 12530-12539. |
60 | Lv B H, Huang Q S, Zhou Z M, et al. Novel biphasic amino-functionalized ionic liquid solvent for CO2 capture: kinetics and regeneration heat duty[J]. Environmental Science and Pollution Research International, 2020, 27(21): 26965-26973. |
61 | Luo X, Liu S, Gao H X, et al. An improved fast screening method for single and blended amine-based solvents for post-combustion CO2 capture[J]. Separation and Purification Technology, 2016, 169: 279-288. |
62 | Hartono A, Svendsen H F. Kinetics reaction of primary and secondary amine group in aqueous solution of diethylenetriamine (DETA) with carbon dioxide[C]//Gale J, Herzog H, Braitsch J. 9th International Conference on Greenhouse Gas Control Technologies. Washington, DC: Energy Procedia, 2009: 853-859. |
63 | Hasib-ur-Rahman M, Siaj M, Larachi F. CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: a viable approach with carbamate crystallization and curbed corrosion behavior[J]. International Journal of Greenhouse Gas Control, 2012, 6: 246-252. |
64 | Hasib-ur-Rahman M, Larachi F. CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration[J]. Environmental Science & Technology, 2012, 46(20): 11443-11450. |
65 | Hasib-ur-Rahman M, Bouteldja H, Fongarland P, et al. Corrosion behavior of carbon steel in alkanolamine/room-temperature ionic liquid based CO2 capture systems[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 8711-8718. |
66 | Yu G R, Fan S S, Chen X C, et al. CO2 absorption by binary mixture of ionic liquids-monoethanolamine at lower pressure[J]. International Journal of Greenhouse Gas Control, 2016, 44: 52-58. |
67 | Jiang W F, Wu F, Gao G, et al. Absorption performance and reaction mechanism study on a novel anhydrous phase change absorbent for CO2 capture[J]. Chemical Engineering Journal, 2021, 420: 129897. |
68 | Zhang F, Gao K X, Meng Y N, et al. Intensification of dimethyaminoethoxyethanol on CO2 absorption in ionic liquid of amino acid[J]. International Journal of Greenhouse Gas Control, 2016, 51: 415-422. |
69 | Chen Y, Hu H. Carbon dioxide capture by diethylenetriamine hydrobromide in nonaqueous systems and phase-change formation[J]. Energy & Fuels, 2017, 31(5): 5363-5375. |
70 | Shimizu Y, Ohte Y, Yamamura Y, et al. Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. The Journal of Physical Chemistry B, 2006, 110(28): 13970-13975. |
71 | Shiflett M B, Yokozeki A. Solubility of CO2 in room temperature ionic liquid [hmim][Tf 2N][J]. The Journal of Physical Chemistry B, 2007, 111(8): 2070-2074. |
72 | Widegren J A, Magee J W. Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water[J]. Journal of Chemical and Engineering Data, 2007, 52(6): 2331-2338. |
73 | Blokhin A V, Paulechka Y U, Kabo G J. Thermodynamic properties of [C6mim][NTf 2] in the condensed state [J]. Journal of Chemical and Engineering Data, 2006, 51(4): 1377-1388. |
74 | Klepáčová K, Huttenhuis P J G, Derks P W J, et al. Vapor pressures of several commercially used alkanolamines[J]. Journal of Chemical and Engineering Data, 2011, 56(5): 2242-2248. |
75 | Nguyen T, Hilliard M, Rochelle G T. Amine volatility in CO2 capture[J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 707-715. |
76 | Cadena C, Anthony J L, Shah J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society, 2004, 126(16): 5300-5308. |
77 | Rainbolt J E, Koech P K, Yonker C R, et al. Anhydrous tertiary alkanolamines as hybrid chemical and physical CO2 capture reagents with pressure-swing regeneration[J]. Energy & Environmental Science, 2011, 4(2): 480-484. |
78 | Usubharatana P, Tontiwachwuthikul P. Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents[C]// Gale J, Herzog H, Braitsch J. 9th International Conference on Greenhouse Gas Control Technologies. Washington, DC: Energy Procedia, 2009: 95-102. |
79 | Svensson H, Edfeldt J, Velasco V Z, et al. Solubility of carbon dioxide in mixtures of 2-amino-2-methyl-1-propanol and organic solvents[J]. International Journal of Greenhouse Gas Control, 2014, 27: 247-254. |
80 | Li X Y, Hou M Q, Zhang Z F, et al. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters[J]. Green Chemistry, 2008, 10(8): 879-884. |
81 | Taylor S F R, McCrellis C, McStay C, et al. CO2 capture in wet and dry superbase ionic liquids[J]. Journal of Solution Chemistry, 2015, 44(3): 511-527. |
82 | Gurkan B, Goodrich B F, Mindrup E M, et al. Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture[J]. The Journal of Physical Chemistry Letters, 2010, 1(24): 3494-3499. |
83 | Seo S, Quiroz-Guzman M, DeSilva M A, et al. Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2 capture[J]. The Journal of Physical Chemistry B, 2014, 118(21): 5740-5751. |
84 | Seo S, Simoni L D, Ma M T, et al. Phase-change ionic liquids for postcombustion CO2 capture[J]. Energy & Fuels, 2014, 28(9): 5968-5977. |
85 | Eisinger R S, Keller G E. Process for CO2 capture using ionic liquid that exhibits phase change[J]. Energy & Fuels, 2014, 28(11): 7070-7078. |
86 | Meljac L, Goetz V, Py X. Isothermal composite adsorbent (Part Ⅰ): Thermal characterisation[J]. Applied Thermal Engineering, 2007, 27(5/6): 1009-1016. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[4] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[5] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[6] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[7] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[8] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||