化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5278-5285.DOI: 10.11949/0438-1157.20200097
收稿日期:
2020-02-03
修回日期:
2020-06-03
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
王夏晖
作者简介:
朱文会(1988—),男,硕士研究生,工程师,基金资助:
Wenhui ZHU(),Xintong YANG,Xiahui WANG(
),Ran LU,Ruiping LIU,Xi CHEN
Received:
2020-02-03
Revised:
2020-06-03
Online:
2020-11-05
Published:
2020-11-05
Contact:
Xiahui WANG
摘要:
以黄河上游若尔盖湿地(A土)、中游包头南海湿地(B土)、下游黄河三角洲湿地(C土)为研究对象,分别选用NH4NO3和葡萄糖作为外加氮源和碳源,采用28 d恒温培养法,研究了外源添加对黄河流域典型湿地土壤日平均碳矿化速率(Caverage)、净氮矿化速率(NNmin)、净硝化速率(NNnitri)的影响。结果表明,湿地类型对土壤碳、氮矿化及硝化速率影响显著,土壤理化性质差异是主要影响因素。外源碳添加对不同类型湿地Caverage均显著提高,且对A土促进作用最显著;外源氮添加对Caverage影响不显著。外源碳、氮添加水平对不同类型湿地NNmin的影响存在显著差异。低水平碳源添加显著抑制C土NNmin,但对A土和B土NNmin影响不显著;高水平碳源添加对不同类型湿地NNmin均表现出显著的抑制作用。低水平氮源添加对不同类型湿地NNmin影响不显著;高氮添加显著抑制B土、C土NNmin,但对A土NNmin影响不显著。外源碳、氮添加对不同类型湿地NNnitri的影响不显著。
中图分类号:
朱文会,杨欣桐,王夏晖,卢然,刘瑞平,陈茜. 外源添加对黄河流域典型湿地土壤矿化及硝化的影响[J]. 化工学报, 2020, 71(11): 5278-5285.
Wenhui ZHU,Xintong YANG,Xiahui WANG,Ran LU,Ruiping LIU,Xi CHEN. Effects of exogenous addition on soil mineralization and nitrification of typical wetlands in the Yellow River Basin[J]. CIESC Journal, 2020, 71(11): 5278-5285.
Item | Soil A | Soil B | Soil C |
---|---|---|---|
water content/% | 125±3 | 52±8 | 33±4 |
pH | 7.25±0.04 | 7.86±0.06 | 7.97±0.88 |
NO3--N/(mg·kg-1) | 6.82±3.89 | 8.70±0.86 | 4.10±0.56 |
NH4+-N/(mg·kg-1) | 10.47±5.22 | 7.79±2.27 | 6.85±1.20 |
microbial biomass N (MBN)/(mg·kg-1) | 59.18±5.36 | 28.33±1.56 | 22.52±0.96 |
microbial biomass C (MBC)/(mg·kg-1) | 332.17±27.63 | 110.18±12.41 | 93.77±6.57 |
total organic carbon (TOC)/(g·kg-1) | 299.79±11.19 | 45.91±2.26 | 19.95±1.37 |
total N/(g·kg-1) | 10.74±0.055 | 1.12±0.076 | 0.50±0.34 |
表1 土壤基本理化性质
Table 1 Basic physical and chemical properties of the experimental soil
Item | Soil A | Soil B | Soil C |
---|---|---|---|
water content/% | 125±3 | 52±8 | 33±4 |
pH | 7.25±0.04 | 7.86±0.06 | 7.97±0.88 |
NO3--N/(mg·kg-1) | 6.82±3.89 | 8.70±0.86 | 4.10±0.56 |
NH4+-N/(mg·kg-1) | 10.47±5.22 | 7.79±2.27 | 6.85±1.20 |
microbial biomass N (MBN)/(mg·kg-1) | 59.18±5.36 | 28.33±1.56 | 22.52±0.96 |
microbial biomass C (MBC)/(mg·kg-1) | 332.17±27.63 | 110.18±12.41 | 93.77±6.57 |
total organic carbon (TOC)/(g·kg-1) | 299.79±11.19 | 45.91±2.26 | 19.95±1.37 |
total N/(g·kg-1) | 10.74±0.055 | 1.12±0.076 | 0.50±0.34 |
图1 不同类型湿地土壤碳、氮矿化与硝化速率标有不同小写字母(a、b、c)表示不同类型湿地土壤净氮矿化速率差异显著;标有不同希腊字母(α、β)表示不同类型湿地土壤净硝化速率差异显著;标有不同罗马数字(Ⅰ、Ⅱ、Ⅲ)表示不同类型湿地土壤碳矿化速率差异显著
Fig.1 Carbon and nitrogen mineralization and nitrification rate with different wetland type
项目 | Water cotent | pH | MBN | MBC | TOC | Total N | NH4+-N | NO3--N | Caverage | NNmin | NNnitri |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | -0.592 | 1 | |||||||||
MBN | 0.990** | -0.613 | 1 | ||||||||
MBC | 0.986** | -0.646 | 0.996** | 1 | |||||||
TOC | 0.989** | -0.665 | 0.991** | 0.996** | 1 | ||||||
total N | 0.984** | -0.678* | 0.983** | 0.992** | 0.999** | 1 | |||||
NH4+-N | 0.988** | -0.595 | 0.978** | 0.970** | 0.981** | 0.977** | 1 | ||||
NO3--N | 0.283 | 0.201 | 0.235 | 0.152 | 0.174 | 0.145 | 0.337 | 1 | |||
Caverage | 0.977** | -0.563 | 0.958** | 0.941** | 0.956** | 0.949** | 0.989** | 0.444 | 1 | ||
NNmin | 0.966** | -0.585 | 0.950** | 0.944** | 0.963** | 0.961** | 0.968** | 0.333 | 0.978** | 1 | |
NNnitri | 0.962** | -0.592 | 0.967** | 0.958** | 0.963** | 0.956** | 0.947** | 0.289 | 0.948** | 0.963** | 1 |
表2 土壤基本理化性质参数与土壤矿化及硝化速率的Pearson相关性分析
Table 2 Pearson correlation analysis for physical and chemical parameters and transformation rate of carbon and nitrogen
项目 | Water cotent | pH | MBN | MBC | TOC | Total N | NH4+-N | NO3--N | Caverage | NNmin | NNnitri |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | -0.592 | 1 | |||||||||
MBN | 0.990** | -0.613 | 1 | ||||||||
MBC | 0.986** | -0.646 | 0.996** | 1 | |||||||
TOC | 0.989** | -0.665 | 0.991** | 0.996** | 1 | ||||||
total N | 0.984** | -0.678* | 0.983** | 0.992** | 0.999** | 1 | |||||
NH4+-N | 0.988** | -0.595 | 0.978** | 0.970** | 0.981** | 0.977** | 1 | ||||
NO3--N | 0.283 | 0.201 | 0.235 | 0.152 | 0.174 | 0.145 | 0.337 | 1 | |||
Caverage | 0.977** | -0.563 | 0.958** | 0.941** | 0.956** | 0.949** | 0.989** | 0.444 | 1 | ||
NNmin | 0.966** | -0.585 | 0.950** | 0.944** | 0.963** | 0.961** | 0.968** | 0.333 | 0.978** | 1 | |
NNnitri | 0.962** | -0.592 | 0.967** | 0.958** | 0.963** | 0.956** | 0.947** | 0.289 | 0.948** | 0.963** | 1 |
1 | 李云飞, 谢婷, 石万里, 等. 腾格里沙漠东南缘人工固沙植被区表层土壤有机碳矿化对凋落物添加的响应[J]. 中国沙漠, 2019, 39(5): 200-209. |
Li Y F, Xie T, Shi W L, et al. Response of topsoil organic carbon mineralization to litter addition in the revegetation area in the southeastern fringe of the Tengger Desert[J]. Journal of Desert Research, 2019, 39(5): 200-209. | |
2 | 胡敏杰, 邹芳芳, 仝川, 等. 氮、硫输入对河口湿地土壤有机碳矿化的实验研究[J]. 环境科学学报, 2016, 36(11): 4184-4192. |
Hu M J, Zou F F, Tong C, et al. Effects of nitrogen and sulfate input on soil organic carbon mineralization in the Min River estuarine wetland[J]. Acta Scientiae Circumstantiae, 2016, 36(11): 4184-4192. | |
3 | Gu F, Zhang Y, Huang M, et al. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981—2010[J]. Atmos. Environ., 2015, 123: 171-179. |
4 | Song M, Jiang J, Xu X, et al. Correlation between CO2 efflux and net nitrogen mineralization and its response to external C or N supply in an alpine meadow soil[J]. Pedosphere, 2011, 21(5): 666-675. |
5 | Mistch W J, Gosselin J G. Wetlands[M]. New York: Van Nostrand Reinhold Company Inc., 2000: 89-125. |
6 | Drastig K. Effects of nitrogen fertilization and irrigation on NO emissions from a sandy soil in Germany[J]. Arch. Agro. Soil Sci., 2015, 61(5): 1-12. |
7 | 遆超普, 颜晓元. 基于氮排放数据的中国大陆大气氮素湿沉降量估算[J]. 农业环境科学学报, 2010, 29(8): 1606-1611. |
Ti C P, Yan X Y. Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data[J]. Journal of Agro-Environment Science, 2010, 29(8): 1606-1611. | |
8 | 段雷, 郝吉明, 谢绍东, 等. 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷[J]. 环境科学, 2002, 23(2):7-12. |
Duan L, Hao J M, Xie S D, et al. Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method[J]. Chinese Journal of Environmental Science, 2002, 23(2):7-12. | |
9 | Xu W, Luo X, Pan Y, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China[J]. Atmospheric Chemistry and Physics, 2015, 15: 12345-12360. |
10 | Ferrati R, Canziani G A, Moreno D R. Estero del Ibera: hydrometeorological and hydrolocical characterization[J]. Ecological Modelling, 2005, 186: 3-15. |
11 | Tu L, Hu T, Zhang J, et al. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem[J]. Soil Biol. Biochem., 2013, 58: 255-264. |
12 | 牟晓杰, 孙志高, 刘兴土. 黄河口典型潮滩湿地土壤净氮矿化与硝化作用[J]. 中国环境科学, 2015, 35(5): 1466-1473. |
Mou X J, Sun Z G, Liu X T. Net nitrogen mineralization and nitrification in the tidal marsh soils of the Yellow River Estuary[J]. China Environmental Science, 2015, 35(5): 1466-1473. | |
13 | Tian Y Q, Ouyang H, Gao Q, et al. Responses of soil nitrogen mineralization to temperature and moisture in alpine ecosystems on the Tibetan Plateau[J]. Procedia Environmental Sciences, 2010, 2: 218-224. |
14 | 王小云, 温腾. 模拟氮沉降对小兴安岭地区人工红松林土壤氮转化的影响[J]. 土壤通报, 2017, 48(3): 604-609. |
Wang X Y, Wen T. Effects of simulated nitrogen deposition on soil nitrogen transformation in artificial korean pine of Xiaoxing anling Region[J]. Chinese Journal of Soil Science, 2017, 48(3): 604-609. | |
15 | 左其亭. 黄河流域生态保护和高质量发展研究框架[J]. 人民黄河, 2019, 41(11): 1-6, 16. |
Zuo Q T. Research framework for ecological protection and high-quality development in the Yellow River Basin[J]. Yellow River, 2019, 41(11): 1-6, 16. | |
16 | 郗敏, 刘红玉, 吕宪国. 流域湿地水质净化功能研究进展[J]. 水科学进展, 2006, (4): 566-573. |
Xi M, Liu H Y, Lyu X G. Progress in study on the water quality purification functions of wetlands in watersheds[J]. Advances in Water Science, 2006, (4): 566-573. | |
17 | 吴迎斌. 可持续发展角度下中国湿地环境管理法律问题研究[J]. 环境科学与管理, 2016, 7: 163-166. |
Wu Y B. Research on legal problems of environmental management for sustainable development of wetlands angle[J]. Environmental Science and Management, 2016, 7: 163-166. | |
18 | 于元赫, 吕建树, 王亚梦. 黄河下游典型区域土壤重金属来源解析及空间分布[J]. 环境科学, 2018, 39(6): 2865-2874. |
Yu Y H, Lyu J S, Wang Y M. Source identification and spatial distribution of heavy metals in soils in typical areas around the lower Yellow River[J]. Chinese Journal of Environmental Science, 2018, 39(6): 2865-2874. | |
19 | 鲁垠涛, 王雪雯, 张士超, 等. 黄河全流域岸边表层土壤中PAHs的分布、来源及风险评估[J]. 中国环境科学, 2019, 39(5): 2078-2085. |
Lu Y T, Wang X W, Zhang S C, et al. Distribution, source and risk assessment of PAHs in surface soil of the Yellow River Basin[J]. China Environmental Science, 2019, 39(5): 2078-2085. | |
20 | 王红, 宫鹏, 刘高焕. 黄河三角洲多尺度土壤盐分的空间分异[J]. 地理研究, 2006, 25(4): 649-658. |
Wang H, Gong P, Liu G H. Multi-scale spatial variations in soil salt in the Yellow River Delta[J]. Geographical Research, 2006, 25(4): 649-658. | |
21 | 杨文焕, 王铭浩, 李卫平, 等. 黄河湿地包头段不同地被类型对土壤有机碳的影响[J]. 生态环境学报, 2018, 27(6): 1034-1043. |
Yang W H, Wang M H, Li W P, et al. Effects of land use types on soil organic carbon in the South China Sea Wetland[J]. Ecology and Environment, 2018, 27(6): 1034-1043. | |
22 | 赵娜娜, 王贺年, 张贝贝, 等. 若尔盖湿地流域径流变化及其对气候变化的响应[J]. 水资源保护, 2019, 35(5): 40-46. |
Zhao N N, Wang H N, Zhang B B, et al. Runoff variation in Zoige Wetland Basin and its response to climate change[J]. Water Resources Protection, 2019, 35(5): 40-46. | |
23 | 樊爱萍, 王晓云, 于玲红, 等. 包头市南海湿地水污染现状与防治对策研究[J]. 环境污染与防治, 2017, 39(12): 1333-1336+1342. |
Fan A P, Wang X Y, Yu L H, et al. Water pollution and its prevention countermeasures of Nanhai wetland, Baotou[J]. Environmental Pollution & Control, 2017, 39(12): 1333-1336+1342. | |
24 | 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2005: 23-107. |
Bao S D. Soil Agrochemical Analysis [M]. Beijing: China Agricultural Press, 2005: 23-107. | |
25 | Zumsteg A, Baath E, Stierli B, et al. Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield[J]. Soil Biology & Biochemistry, 2013, 61:121-132. |
26 | Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J]. Soil Biology & Biochemistry, 2006, 38:2219-2232. |
27 | Mahmoud G, Fayez R. The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran[J]. Soil Biology & Biochemistry, 2007, 39(7): 1699-1702. |
28 | 葛瑞娟, 宋长春, 杨桂生, 等. 外源氮输入对小叶章湿地土壤微生物活性的影响[J]. 水土保持学报, 2010, 24(5): 253-257. |
Ge R J, Song C C, Yang G S, et al. Effects of exogenous N input on soil microbial activity in Deyeuxia anguistifolia marshes[J]. Journal of Soil and Water Conservation, 2010, 24(5): 253-257. | |
29 | Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419(6910): 915-917. |
30 | Kaye J, Barrett J, Burke I. Stable nitrogen and carbon pools in grassland soils of variable texture and carbon content[J]. Ecosystems, 2002, 5: 461-471. |
31 | 田茂洁. 土壤氮素矿化影响因子研究进展[J]. 西华师范大学学报(自然科学版), 2004, 3: 298-303. |
Tian M J. Review on the contributing factors to mineralization of soil nitrogen[J]. Journal of China West Normal University(Natural Science Edition), 2004, 3: 298-303. | |
32 | van Veen J A, Paul E A. Organic carbon dynamics in grassland soils (1): Background information and computer simulation[J]. Canadian Journal of Soil Science, 1981, 61: 185-201. |
33 | Janssen B H. Nitrogen mineralization in relation to C-N ratio and decomposability of organic materials[J]. Plant Soil, 1996, 181: 39-45. |
34 | Schaeffer S M, Evans R D. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland[J]. Oecologia., 2005, 145: 425-433. |
35 | 刘远, 王光利, 李恋卿, 等. 土壤硝化和反硝化微生物群落及活性对大气CO2浓度和温度升高的响应[J]. 环境科学, 2017, 38(3): 1245-1252. |
Liu Y, Wang G L, Li L Q, et al. Response of soil nitrifier and denitrifier community and activity to elevated atmospheric CO2 concentration and temperature[J]. Environmental Science, 2017, 38(3): 1245-1252. |
[1] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[2] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[3] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[4] | 张立, 吴建华, 崔舒惠, 严锋, 孙浩, 钱飞跃. PN/A颗粒污泥-固相反硝化组合工艺的菌群功能解析[J]. 化工学报, 2022, 73(11): 5128-5137. |
[5] | 高歆婕, 许载周, 彭永臻, 黄雨薇, 丁静, 安泽铭, 汪传新. 污泥双回流-厌氧/好氧/缺氧强化内源反硝化深度脱氮[J]. 化工学报, 2022, 73(11): 5098-5105. |
[6] | 车林, 金文标, 陈洪一, 迟惠中, 梁云跃. 反硝化微生物菌剂提升A2/O工艺TN去除效果[J]. 化工学报, 2021, 72(S1): 467-474. |
[7] | 巩有奎, 李美玲, 孙洪伟. 不同NO3-浓度An/A/O-SBR系统PAOs-GAOs竞争及N2O释放特性[J]. 化工学报, 2021, 72(3): 1675-1683. |
[8] | 陈唐维, 潘志成, 陈滢, 刘敏, 陈婷婷, 钟亚萍. 旋流器分流比对剩余污泥的释碳性能影响[J]. 化工学报, 2021, 72(11): 5761-5769. |
[9] | 陈红,谢静,成钰莹,于鑫,陈善平,薛罡,王美琳,罗意,贺向宇. 零价铁强化生物硝化效能及机理研究[J]. 化工学报, 2021, 72(10): 5372-5383. |
[10] | 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435. |
[11] | 刘宗跃, 杨宏, 王少伦, 王佳伟. 硝化细菌工业化快速富集[J]. 化工学报, 2020, 71(8): 3722-3729. |
[12] | 胡智丰,邓时海,张超,李德生,彭帅. 集成式铁基质生物膜反应器自养反硝化深度脱氮[J]. 化工学报, 2020, 71(7): 3304-3312. |
[13] | 王少伦, 杨宏. 高效包埋硝化活性填料硝化特性及应用研究[J]. 化工学报, 2020, 71(5): 2305-2311. |
[14] | 孙瑞阳, 陆颖舟, 孟洪, 李春喜. 噻吩硫化物的硝化产物用于模型油中DBT的高效吸附[J]. 化工学报, 2020, 71(5): 2256-2264. |
[15] | 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||