1 |
Schweizer H P. Triclosan: a widely used biocide and its link to antibiotics[J]. FEMS Microbiology Letters, 2001, 202(1): 1-7.
|
2 |
Zheng X, Yan Z G, Liu P Y, et al. Research progress on toxic effects and water quality criteria of triclosan[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(6): 731-740.
|
3 |
陈芋如. 纳米颗粒物对河口水环境中微生物群落及抗生素抗性基因的影响[D]. 上海: 华东师范大学, 2020.
|
|
Chen Y R. Impact of nanoparticles on the antibiotic resistance genes(ARGs) in estuarine water: ARG variations and their association with the microbial community[D]. Shanghai: East China Normal University, 2020.
|
4 |
成钰莹, 陈红, 薛罡. 纳米铜及三氯生对污泥硝化作用的影响[J]. 环境工程学报, 2018, 12(2): 513-520.
|
|
Cheng Y Y, Chen H, Xue G. Effect of copper nanoparticles and triclosan on sludge nitrification[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 513-520.
|
5 |
Dong X Q, He Y Z, Peng X X, et al. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community[J]. Bioresource Technology, 2021, 319: 124134.
|
6 |
周月. 纳米颗粒对自养脱氮工艺的影响研究[D]. 郑州: 郑州轻工业大学, 2019.
|
|
Zhou Y. Impacts of nano-particles on autotrophic nitrogen removal process[D]. Zhengzhou: Zhengzhou University of Light Industry, 2019.
|
7 |
Chen H, Cheng Y Y, Meng D, et al. Joint effect of triclosan and copper nanoparticles on wastewater biological nutrient removal[J]. Environmental Technology, 2018, 39(19): 2447-2456.
|
8 |
孟迪, 陈红, 薛罡. 典型PPCPs与纳米铜颗粒理化性质的交互影响[J]. 化工学报, 2016, 67(10): 4455-4460.
|
|
Meng D, Chen H, Xue G. Interaction effects of typical PPCPs and copper nanoparticles on physical-chemical properties[J]. CIESC Journal, 2016, 67(10): 4455-4460.
|
9 |
Liu H B, Chen Z H, Guan Y N, et al. Role and application of iron in water treatment for nitrogen removal: a review[J]. Chemosphere, 2018, 204: 51-62.
|
10 |
Liu Z G, Fan J H, Ma L M, et al. Enhancing simultaneous removal of nitrogen and phosphorus from municipal wastewater by Fe-Cu shavings[J]. Desalination and Water Treatment, 2014, 52(37/38/39): 7422-7428.
|
11 |
Xu Y, Wang C, Hou J, et al. Application of zero valent iron coupling with biological process for wastewater treatment: a review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4): 667-693.
|
12 |
Chen H, Zhao X H, Cheng Y Y, et al. Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(3): 1404-1412.
|
13 |
Chen H, Xue G, Jiang M R, et al. Advanced nitrogen removal from the biological secondary effluent of dyeing wastewater via a biological–ferric–carbon nitrification and denitrification process[J]. RSC Advances, 2016, 6(108): 106951-106959.
|
14 |
王晓宁. 青枯菌copSRABCD基因簇铜抗性作用机理及表达调控研究[D]. 北京: 中国农业科学院, 2019.
|
|
Wang X N. Research on the mechanism of copper resistance and expression regulation of copSRABCD gene cluster in Ralstoniasolanacearum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
|
15 |
Chen H, Liu Y F, Xu X Q, et al. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater?[J]. Water Research, 2019, 148: 344-358.
|
16 |
Sun W, Qian X, Gu J, et al. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure[J]. Scientific Reports, 2016, 6: 30237.
|
17 |
Lowry O, Rosebrough N, Farr A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
|
18 |
Yuan Y, Zhou Z, Jiang J, et al. Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment[J]. Bioresource Technology, 2021, 320: 124419.
|
19 |
Kawagoshi Y, Fujisaki K, Tomoshige Y, et al. Temperature effect on nitrogen removal performance and bacterial community in culture of marine anammox bacteria derived from sea-based waste disposal site[J]. Journal of Bioscience and Bioengineering, 2012, 113(4): 515-520.
|
20 |
Ward N L, Challacombe J F, Janssen P H, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Applied and Environmental Microbiology, 2009, 75(7): 2046-2056.
|
21 |
Wang W F, Qiu Z Q, Tan H M, et al. Siderophore production by actinobacteria[J]. BioMetals, 2014, 27(4): 623-631.
|
22 |
McNamara P J, LaPara T M, Novak P J. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance[J]. Environmental Science & Technology, 2014, 48(13): 7393-7400.
|
23 |
Lejon D P H, Nowak V, Bouko S, et al. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination[J]. FEMS Microbiology Ecology, 2007, 61(3): 424-437.
|
24 |
Alquethamy S, Khorvash M, Pederick V, et al. The role of the CopA copper efflux system in Acinetobacter baumannii virulence[J]. International Journal of Molecular Sciences, 2019, 20(3): 575.
|
25 |
杨帆, 徐雯丽, 钱雅洁, 等. 零价铁对污泥厌氧消化过程中四环素抗性基因水平转移的作用影响[J]. 环境科学, 2018, 39(4): 1748-1755.
|
|
Yang F, Xu W L, Qian Y J, et al. Effect of zero valent iron on the horizontal gene transfer of tetracycline resistance genes during anaerobic sludge digestion process[J]. Environmental Science, 2018, 39(4): 1748-1755.
|
26 |
Cao Q, Liu X F, Ran Y, et al. Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors[J]. Science of the Total Environment, 2019, 649: 1-11.
|
27 |
Zhang S H, Pang S, Wang P F, et al. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate[J]. Scientific Reports, 2016, 6: 36178.
|
28 |
Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509.
|
29 |
Wang Z Y, Yao Y N, Steiner N, et al. Impacts of nitrogen-containing coagulants on the nitritation/denitrification of anaerobic digester centrate[J]. Environmental Science: Water Research & Technology, 2020, 6(12): 3451-3459.
|
30 |
Liu Y, Feng C P, Chen N, et al. Bioremediation of nitrate and Fe(Ⅱ) combined contamination in groundwater by heterotrophic denitrifying bacteria and microbial community analysis[J]. RSC Advances, 2016, 6(110): 108375-108383.
|
31 |
Ekici S, Turkarslan S, Pawlik G, et al. Intracytoplasmic copper homeostasis controls cytochrome c oxidase production[J]. mBio, 2014, 5(1): e01055-e01013.
|