化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4314-4324.DOI: 10.11949/0438-1157.20200525
• 材料化学工程与纳米技术 • 上一篇
冯雪廷1(),矫庆泽1,2,李群1,冯彩虹1(
),赵芸1,黎汉生1,李海军3,蔡惠群3
收稿日期:
2020-05-08
修回日期:
2020-07-06
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
冯彩虹
作者简介:
冯雪廷(1991—),女,博士研究生,基金资助:
Xueting FENG1(),Qingze JIAO1,2,Qun LI1,Caihong FENG1(
),Yun ZHAO1,Hansheng LI1,Haijun LI3,Huiqun CAI3
Received:
2020-05-08
Revised:
2020-07-06
Online:
2020-09-05
Published:
2020-09-05
Contact:
Caihong FENG
摘要:
NiCo2S4是一种极具发展前景的钠离子电池(SIBs)负极材料。采用简单的一步法(混合和热处理)原位合成了锚定在N、S共掺杂还原氧化石墨烯上的纳米颗粒自组装的NiCo2S4亚微米球(NiCo2S4/N,S-rGO)。XPS表明了NiCo2S4与N,S-rGO之间存在电子转移,证实了NiCo2S4与N,S-rGO之间强的协同作用。纳米粒子自组装的NiCo2S4亚微米球有效地促进了离子的扩散,N,S-rGO优异的电学和力学性能不仅提高了电极的导电性,而且有效地缓冲了充/放电过程中NiCo2S4/N,S-rGO的体积变化。NiCo2S4/N,S-rGO作为SIBs的负极材料呈现出高可逆容量,优越的倍率性能和长期稳定性(在电流密度为0.5 A/g时循环130次后仍保持了396.7 mA·h/g的高比容量。即使在电流密度为2 A/g时,经过1000次循环后比容量仍保持在283.3 mA·h/g)。研究结果为高效负极材料的设计和合成提供了新的思路。
中图分类号:
冯雪廷, 矫庆泽, 李群, 冯彩虹, 赵芸, 黎汉生, 李海军, 蔡惠群. NiCo2S4/N,S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324.
Xueting FENG, Qingze JIAO, Qun LI, Caihong FENG, Yun ZHAO, Hansheng LI, Haijun LI, Huiqun CAI. Preparation and sodium storage performance of NiCo2S4/N,S-rGO nanocomposites[J]. CIESC Journal, 2020, 71(9): 4314-4324.
图1 N,S-rGO的SEM (a)和TEM (b)图;NiCo2S4/N,S-rGO的SEM (c)和TEM (d)图;NiCo2S4/N,S-rGO的HRTEM图(e);NiCo2S4的SEM图(f)
Fig.1 SEM (a) and TEM (b) images of the N,S-rGO; SEM (c) and TEM (d) images of the NiCo2S4/N,S-rGO; HRTEM image of the NiCo2S4/N,S-rGO (e); SEM image of the NiCo2S4 (f)
图2 NiCo2S4/N,S-rGO, NiCo2S4和N,S-rGO的XRD谱图(a); NiCo2S4/N,S-rGO的EDS谱图(b); NiCo2S4/N,S-rGO(c) 和NiCo2S4(d) 的N2吸-脱附曲线图和孔径分布图
Fig.2 XRD patterns of NiCo2S4/N,S-rGO, NiCo2S4 and N,S-rGO (a); EDS spectrum of NiCo2S4/N,S-rGO (b); N2 adsorption-desorption isotherms and corresponding pore size distribution curves of NiCo2S4/N,S-rGO (c) and NiCo2S4 (d)
图3 NiCo2S4/N,S-rGO和N,S-rGO的N 1s XPS谱图(a); NiCo2S4/N,S-rGO,NiCo2S4和N,S-rGO的S 2p XPS谱图(b); NiCo2S4/N,S-rGO和NiCo2S4的Ni 2p (c)和Co 2p (d) XPS谱图
Fig.3 N 1s XPS spectra of NiCo2S4/N,S-rGO and N,S-rGO (a); S 2p XPS spectra of NiCo2S4/N,S-rGO, NiCo2S4 and N,S-rGO (b); Ni 2p (c) and Co 2p (d) XPS spectra of NiCo2S4/N,S-rGO and NiCo2S4
图4 0.2 mV/s的扫速下NiCo2S4/N,S-rGO的循环伏安曲线(a); 电流密度为0.5 A/g的前3圈的充放电曲线(b); NiCo2S4/N,S-rGO和NiCo2S4的倍率性能(c); NiCo2S4/N,S-rGO在电流密度为0.5 A/g下的循环性能图(d); NiCo2S4/N,S-rGO和NiCo2S4在电流密度为2 A/g下的长期循环性能图 (图中库仑效率为NiCo2S4/N,S-rGO的数值) (e)
Fig.4 CV curves of NiCo2S4/N,S-rGO at a sweep rate of 0.2 mV/s (a); Galvanostatic discharge/charge curves of NiCo2S4/N,S-rGO at 0.5 A/g at initial 3 cycles (b); Rate capability of NiCo2S4/N,S-rGO and NiCo2S4 (c); Cycling stability of NiCo2S4/N,S-rGO at 0.5 A/g (d); Long-term cycling stability of NiCo2S4/N,S-rGO and NiCo2S4 at 2 A/g (the coulombic efficiency is the value of NiCo2S4/N,S-rGO) (e)
图5 NiCo2S4/N,S-rGO和NiCo2S4的交流阻抗图(a); NiCo2S4/N,S-rGO和NiCo2S4在低频区Z′和ω-1/2的线性关系图(b)
Fig.5 Nyquist plots of NiCo2S4/N,S-rGO and NiCo2S4 (a); Relation between Z′ and ω-1/2 at low frequency region of NiCo2S4/N,S-rGO and NiCo2S4 (b)
图6 不同扫速下NiCo2S4/N,S-rGO的循环伏安曲线(a); lgν和lgi线性关系图(b); 1 mV/s扫速下的赝电容贡献(c); 不同扫速下的赝电容贡献(d)
Fig.6 CV curves of NiCo2S4/N,S-rGO at different scan rate (a); Linear relationship between lgν and lgi (b); Contribution ratio of pseudocapacitance at 1 mV/s (c); Contribution ratio of pseudocapacitance at different scan rate (d)
图7 NiCo2S4/N,S-rGO与其他基于过渡金属硫化物的电极材料的性能比较:循环容量(图中数字为循环圈数) (a); 倍率性能(b)this work; RGO-NiCo2S4 hollow prisms[12]; NiCo2S4 nanoparticles@rGO[25]; NiCo2S4 nanosheets[13]; Co3S4@N-Carbon[44]; NiCo2S4@MoS2[45]; CuCo2S4/rGO[46]; Co3S4/CoMo2S4@rGO[47]; multi-layered sandwich-like CuCo2S4/rGO[48]; Ni-Fe-S-CNT[49]; Co9S8@B,N-carbon[50]
Fig.7 Cyclic capacity (the numbers indicate the number of cycles) (a) and rate performance comparison (b) of NiCo2S4/N,S-rGO with other transition metal sulfide-based anodes for sodium ions battery
1 | Liu W, Chen Z, Zhou G, et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries[J]. Advanced Materials, 2016, 28(18): 3578-3583. |
2 | Chen J, Li S, Kumar V, et al. Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode[J]. Advanced Energy Materials, 2017, 7(19): 1700180. |
3 | 李延伟, 李世玉, 谢志平, 等. 电化学沉积制备V2O5薄膜电极的表面结构及储钠性能[J]. 化工学报, 2016, 67(11): 4771-4778. |
Li Y W, Li S Y, Xie Z P, et al. Surface morphology and sodium storage performance of V2O5 thin film electrode prepared by CTAB assisted electrodeposition[J]. CIESC Journal, 2016, 67(11): 4771-4778. | |
4 | Xiao Y, Hwang J Y, Belharouak I, et al. Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure[J]. Nano Energy, 2017, 32: 320-328. |
5 | Chandula K W, Li H, Li X, et al. Recent advances in graphene based materials as anode materials in sodium-ion batteries[J]. Journal of Energy Chemistry, 2020, 42: 91-107. |
6 | 许婧, 杨德志, 廖小珍, 等. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J]. 物理化学学报, 2015, 31(5): 913-919. |
Xu J, Yang D Z, Liao X Z, et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 913-919. | |
7 | Chen T, Ma Y, Guo Q, et al. A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes[J]. Journal of Material Chemistry A, 2017, 5(7): 3179-3185. |
8 | Zhang Y, Wang N, Xue P, et al. Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery[J]. Chemical Engineering Journal, 2018, 343: 512-519. |
9 | Zhao W, Ci S, Hu X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofibers anodes for sodium ion batteries[J]. Nanoscale, 2019, 11(11): 4688-4695. |
10 | Liu Z, Lu T, Song T, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J]. Energy Environmental Science, 2017, 10(7): 1576-1580. |
11 | Kang W, Wang Y, Xu J. Recent progress of layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries[J]. Journal of Material Chemistry A, 2017, 5(17): 7667-7690. |
12 | Zhang Z, Li Z, Yin L. Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as high performance anode materials for sodium and lithium ion batteries[J]. New Journal of Chemistry, 2018, 42(2): 1467-1476. |
13 | 赵明宇, 朱琳, 付博文, 等. NiCo2S4六角片作为钠离子电池负极材料的电化学性能及储钠动力学[J]. 物理化学学报, 2019, 35(2): 193-199. |
Zhao M Y, Zhu L, Fu B W, et al. Sodium ion storage performance of NiCo2S4 hexagonal nanosheets[J]. Acta Physico-Chimica Sinica, 2019, 35(2): 193-199. | |
14 | Chao D, Ouyang B, Liang P, et al. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage[J]. Advanced Materials, 2018, 30(49): 1804833. |
15 | 王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
Wang X B, Zhao Q S, Cheng Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677. | |
16 | Yuan H, Kong L, Li T, et al. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion[J]. Chinese Chemical Letters, 2017, 28(12): 2180-2194. |
17 | Zhao Y, Pang Q, Meng Y, et al. Self-assembled CoS nanoflowers wrapped in reduced graphene oxides as the high-performance anode materials for sodium-ion batteries[J]. Chemistry, 2017, 23(53): 13150-13157. |
18 | Li G, Luo D, Wang X, et al. Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene[J]. Advanced Functional Materials, 2017, 27(40): 1702562. |
19 | Xu X, Zeng H, Han D, et al. Nitrogen and sulfur co-doped graphene nanosheets to improve anode materials for sodium-ion batteries[J]. ACS Applied Material Interfaces, 2018, 10(43): 37172-37180. |
20 | Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6(8): 7084-7091. |
21 | Qin W, Chen T, Pan L, et al. MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance[J]. Electrochimica Acta, 2015, 153: 55-61. |
22 | 严正琦, 高江姗, 张鑫韬, 等. 氧化石墨烯的酸性还原及其超级电容器[J]. 化工学报, 2019, 70(12): 4881-4888. |
Yan Z Q, Gao J S, Zhang X T, et al. Acid reduction of graphene oxide and performance of supercapacitor[J]. CIESC Journal, 2019, 70(12): 4881-4888. | |
23 | Xiao M, Zhu J, Feng L, et al. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Advanced Materials, 2015, 27(15): 2521-2527. |
24 | 白军善, 魏智强, 朱学良, 等. 碳包覆铜纳米颗粒的比表面积和孔体积[J]. 中国有色金属学报, 2017, 27(9): 1896-1901. |
Bai J S, Wei Z Q, Zhu X L, et al. Specific surface area and pore structure of carbon coated copper nanoparticles[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(9): 1896-1901. | |
25 | Sun Z, Zhao C, Cao X, et al. Insights into the phase transformation of NiCo2S4@rGO for sodium-ion battery electrode[J]. Electrochimica Acta, 2020, 338: 135900. |
26 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧化还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
27 | Feng X, Jiao Q, Li Q, et al. NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts[J]. Electrochimica Acta, 2020, 331: 135356. |
28 | Luo Z, Yang D, Qi G, et al. Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction[J]. Journal of Materials Chemistry A, 2014, 2(48): 20605-20611. |
29 | Yang S, Wang Y, Zhang H, et al. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution[J]. Journal of Catalysis, 2019, 371: 20-26. |
30 | Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 54(7): 2131-2136. |
31 | Wang M, Lai A, Fang J, et al. Hydrangea-like NiCo2S4 hollow microsphere as an advanced bifunctional electrocatalyst for aqueous metal/air batteries[J]. Catalysis Science Technology, 2016, 6(2): 434-437. |
32 | Khoo S Y, Miao J, Yang H B, et al. One-step hydrothermal tailoring of NiCo2S4 nanostructures on conducting oxide substrates as an efficient counter electrode in dye-sensitized solar cells[J]. Advanced Materials Interfaces, 2015, 2(18): 1500384. |
33 | Ouyang Y, Ye H, Xia X, et al. Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry A, 2019, 7(7): 3228-3237. |
34 | Choi S H, Kang Y C. Synergetic compositional and morphological effects for improved Na+ storage properties of Ni3Co6S8-reduced graphene oxide composite powders[J]. Nanoscale, 2015, 7(14): 6230-6237. |
35 | Li S, Ge P, Jiang F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property[J]. Energy Storage Materials, 2019, 16: 267-280. |
36 | 刘家斌, 张辉, 崔艳华, 等. 脉冲激光沉积NiCo2S4薄膜及其电化学特征[J]. 无机化学学报, 2015, 31(12): 2331-2336. |
Liu J B, Zhang H, Cui Y H, et al. Pulsed laser deposited NiCo2S4 thin films and investigation of their electrochemical properties[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(12): 2331-2336. | |
37 | Yin M, Zhao D, Feng C, et al. Construction of porous Co9S8 hollow boxes with double open ends toward high-performance half/full sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6305-6314. |
38 | Shi J, Wang Y, Su Q, et al. N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 353: 606-614. |
39 | Zhu C, Kopold P, Li W, et al. Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite[J]. Journal of Materials Chemistry A, 2015, 3(41): 20487-20493. |
40 | Liang K, He H, Ren Y, et al. Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries[J]. Journal of Materials Science, 2020, 55, 4372-4381. |
41 | Deng X, Wei Z, Cui C, et al. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage[J]. Journal of Materials Chemistry A, 2018, 6(9): 4013-4022. |
42 | Gu H, Yang L, Zhang Y, et al. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage[J]. Energy Storage Materials, 2019, 21: 203-209. |
43 | Xiang X, Lu Q, Han M, et al. Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through pseudocapacitive effect[J]. Chemical Communications, 2016, 52(18): 3653-3656. |
44 | Jiang Y, Zou G, Hong W, et al. N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries[J]. Nanoscale, 2018, 10(39): 18786-18794. |
45 | Liu B, Kong D, Wang Y, et al. Three-dimensional hierarchical NiCo2S4@MoS2 heterostructure arrays for high performance sodium ion battery[J]. FlatChem, 2018, 10: 14-21. |
46 | Gong Y, Zhao J, Wang H, et al. CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries[J]. Electrochimica Acta, 2018, 292: 895-902. |
47 | Liao Y, Wu C, Zhong Y, et al. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage[J]. Nano Research, 2020, 13(1): 188-195. |
48 | Li Q, Jiao Q, Li H, et al. In-situ preparation of multi-layered sandwich-like CuCo2S4/rGO architectures as anode material for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2020, 156183. |
49 | Zhang S, Wang G, Wang B, et al. 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage[J]. Advanced Functional Materials, 2020, 30(24): 2001592. |
50 | Zhang T, Qu H, Sun K, et al. Facile fabrication of Co9S8 embedded in a boron and nitrogen co-doped carbon matrix as sodium-ion battery anode[J]. ChemElectroChem, 2019, 6(6): 1776-1783. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 368
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||