化工学报 ›› 2021, Vol. 72 ›› Issue (1): 42-60.DOI: 10.11949/0438-1157.20201099
苏瑶瑶1(),李平凡1,汪伟1,2(),巨晓洁1,2,谢锐1,2,刘壮1,2,褚良银1,2
收稿日期:
2020-08-03
修回日期:
2020-11-19
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
汪伟
作者简介:
苏瑶瑶(1994—),女,博士研究生,基金资助:
SU Yaoyao1(),LI Pingfan1,WANG Wei1,2(),JU Xiaojie1,2,XIE Rui1,2,LIU Zhuang1,2,CHU Liangyin1,2
Received:
2020-08-03
Revised:
2020-11-19
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Wei
摘要:
功能微颗粒材料因其微型化和多功能化等优点而在诸多领域具有广泛的应用。微流控技术作为一种崭新的材料制备技术平台,在可控构建功能微颗粒方面展现出了传统制备技术所不具备的独特创造性和优越性。综述了近年来基于微流控液滴模板来可控构建面向化工、医药、储能、环境等领域的多样化功能微颗粒材料的研究新进展。重点介绍了如何基于微流控乳液液滴模板的结构组分设计来理性设计和可控构建多孔结构球形微颗粒、腔室结构球形微颗粒、多样化结构非球形微颗粒等功能微颗粒材料,探讨了基于微颗粒的微观结构和化学组成的耦合来构筑其独特功能特性的设计策略,展望了微流控技术在可控构建新型功能微颗粒材料方面的未来发展趋势。
中图分类号:
苏瑶瑶, 李平凡, 汪伟, 巨晓洁, 谢锐, 刘壮, 褚良银. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60.
SU Yaoyao, LI Pingfan, WANG Wei, JU Xiaojie, XIE Rui, LIU Zhuang, CHU Liangyin. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60.
1 | Li M, Wang W, Zhang Z, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage [J]. Ind. Eng. Chem. Res., 2017, 56(12): 3297-3308. |
2 | Zhao X, Liu Y X, Yu Y R, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery [J]. Nanoscale, 2018, 10(26): 12595-12604. |
3 | Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering [J]. Adv. Drug Deliv. Rev., 2007, 59(4/5): 249-262. |
4 | Zhang M J, Chen T, Zhang P, et al. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination [J]. Soft Matter, 2020, 16(10): 2581-2593. |
5 | Zhang M J, Wang W, Yang X L, et al. Uniform microparticles with controllable highly interconnected hierarchical porous structures [J]. ACS Appl. Mater. Interfaces, 2015, 7(25): 13758-13767. |
6 | He F, Zhang M J, Wang W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release [J]. Adv. Mater. Technol., 2019, 4(6): 1800687. |
7 | Wu F, Wang W, Liu L, et al. Monodisperse hybrid microcapsules with an ultrathin shell of submicron thickness for rapid enzyme reactions [J]. J. Mater. Chem. B, 2015, 3(5): 796-803. |
8 | De La Vega J C, Elischer P, Schneider T, et al. Uniform polymer microspheres: monodispersity criteria, methods of formation and applications [J]. Nanomedicine, 2013, 8(2): 265-285. |
9 | 蔡泉威, 巨晓洁, 谢锐, 等. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747. |
Cai Q W, Ju X J, Xie R, et al. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747. | |
10 | Damasceno P F, Engel M, Glotzer S C. Predictive self-assembly of polyhedra into complex structures [J]. Science, 2012, 337(6093): 453-457. |
11 | Sacanna S, Irvine W T M, Chaikin P M, et al. Lock and key colloids [J]. Nature, 2010, 464(7288): 575-578. |
12 | Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions [J]. Lab Chip, 2011, 11(9): 1587-1592. |
13 | Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions [J]. Angew. Chem. Int. Ed., 2007, 46(47): 8970-8974. |
14 | 鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541. |
Bao B, Zhao S L, Xu J H. Progress in studying fluid phase behaviours with micro- and nano-fluidic technology[J]. CIESC Journal, 2018, 69(11): 4530-4541. | |
15 | Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions [J]. ACC. Chem. Res., 2014, 47(2): 373-384. |
16 | Wang B J, Prinsen P, Wang H Z, et al. Macroporous materials: microfluidic fabrication, functionalization and applications [J]. Chem. Soc. Rev., 2017, 46(3): 855-914. |
17 | Li W, Zhang L Y, Ge X H, et al. Microfluidic fabrication of microparticles for biomedical applications [J]. Chem. Soc. Rev., 2018, 47(15): 5646-5683. |
18 | Whitesides G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101): 368-373. |
19 | Abate A R, Weitz D A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics [J]. Small, 2009, 5(18): 2030-2032. |
20 | Meng Z J, Wang W, Liang X, et al. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules [J]. Lab Chip, 2015, 15(8): 1869-1878. |
21 | Deng N N, Meng Z J, Xie R, et al. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions [J]. Lab Chip, 2011, 11(23): 3963-3969. |
22 | Utada A S, Chu L Y, Fernandez-Nieves A, et al. Dripping, jetting, drops, and wetting: the magic of microfluidics [J]. MRS Bull., 2007, 32(9): 702-708. |
23 | Utada A S, Fernandez-Nieves A, Stone H A, et al. Dripping to jetting transitions in coflowing liquid streams [J]. Physical Review Letters, 2007, 99(9): 094502. |
24 | Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules [J]. Adv. Sci., 2018, 5(6): 1700960. |
25 | Lu Y, Fan H, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J]. Nature, 1999, 398(6724): 223-226. |
26 | Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712. |
27 | Warren S C, Messina L C, Slaughter L S, et al. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly [J]. Science, 2008, 320(5884): 1748-1752. |
28 | Velev O D, Lenhoff A M, Kaler E W. A class of microstructured particles through colloidal crystallization [J]. Science, 2000, 287(5461): 2240-2243. |
29 | Mou C L, Ju X J, Zhang L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464. |
30 | Kim T K, Yoon J J, Lee D S, et al. Gas foamed open porous biodegradable polymeric microspheres [J]. Biomaterials, 2006, 27(2): 152-159. |
31 | Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385(6615): 420-423. |
32 | Chu L Y, Kim J W, Shah R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17(17): 3499-3504. |
33 | Li Z L, Wang W, Li M, et al. Facile fabrication of bubble-propelled micromotors carrying nanocatalysts for water remediation [J]. Ind. Eng. Chem. Res., 2018, 57(13): 4562-4570. |
34 | Su Y Y, Zhang M J, Wang W, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions [J]. Ind. Eng. Chem. Res., 2019, 58(4): 1590-1600. |
35 | Chen L, Zhang M J, Zhang S Y, et al. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35120-35131. |
36 | Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs [J]. J. Membr. Sci., 2019, 590: 117275. |
37 | Wei J, Ju X J, Zou X Y, et al. Multi-stimuli-responsive microcapsules for adjustable controlled-release [J]. Adv. Funct. Mater., 2014, 24(22): 3312-3323. |
38 | Yang X L, Ju X J, Mu X T, et al. Core-shell chitosan microcapsules for programmed sequential drug release [J]. ACS Appl. Mater. Interfaces, 2016, 8(16): 10524-10534. |
39 | Wang Y, Gao S, Ye W H, et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer [J]. Nat. Mater., 2006, 5(10): 791-796. |
40 | Pei Y T, Wei C, Hedrick J L, et al. Co-delivery of drugs and plasmid DNA for cancer therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 41-63. |
41 | Richardson T P, Peters M C, Ennett A B, et al. Polymeric system for dual growth factor delivery [J]. Nat. Biotechnol., 2001, 19(11): 1029-1034. |
42 | Jiang Y, Sun Q, Zhang L, et al. Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system [J]. J. Mater. Chem., 2009, 19(47): 9068-9074. |
43 | He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release [J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754. |
44 | Kreft O, Prevot M, Moehwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions [J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608. |
45 | Liu X, Zhou P, Huang Y, et al. Hierarchical proteinosomes for programmed release of multiple components [J]. Angew. Chem. Int. Ed., 2016, 55(25): 7095-7100. |
46 | Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes [J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150. |
47 | Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components [J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13(5): 325-332. |
48 | Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system [J]. Nature, 2005, 436(7050): 568-572. |
49 | He C, Tang Z, Tian H, et al. Co-delivery of chemotherapeutics and proteins for synergistic therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 64-76. |
50 | Mou C L, Wang W, Ju X J, et al. Dual-responsive microcarriers with sphere-in-capsule structures for co-encapsulation and sequential release [J]. J. Taiwan Inst. Chem. Eng., 2018, 98: 63-69. |
51 | Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat. Nanotechnol., 2007, 2(4): 249-255. |
52 | Ishiyama K, Sendoh M, Yamazaki A, et al. Swimming micro-machine driven by magnetic torque [J]. Sens. Actuators, A, 2001, 91(1/2): 141-144. |
53 | Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids [J]. Science, 2004, 303: 990-993. |
54 | Cai Q W, Ju X J, Zhang S Y, et al. Controllable fabrication of functional microhelices with droplet microfluidics [J]. ACS Appl. Mater. Interfaces, 2019, 11(49): 46241-46250. |
55 | Cai Q W, Ju X J, Chen C, et al. Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures [J]. Chem. Eng. J., 2019, 370: 925-937. |
56 | Tang M J, Wang W, Li, Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures [J]. Ind. Eng. Chem. Res., 2018, 57(29): 9430-9438. |
57 | Wang W, He X H, Zhang M J, et al. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices [J]. Macromol. Rapid Commun., 2017, 38(23): 1700429. |
58 | Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors [J]. J. Am. Chem. Soc., 2005, 127(22): 8058-8063. |
59 | Wang W, Zhang M J, Xie R, et al. Hole-shell microparticles from controllably evolved double emulsions [J]. Angew. Chem. Int. Ed., 2013, 52(31): 8084-8087. |
60 | Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Adv. Mater., 2012, 24(6): 811-816. |
61 | Peyer K E, Zhang L, Nelson B J. Localized non-contact manipulation using artificial bacterial flagella [J]. Appl. Phys. Lett., 2011, 99(17): 174101. |
62 | Mcnaughton B H, Anker J N, Kopelman R. Magnetic microdrill as a modulated fluorescent pH sensor [J]. J. Magn. Magn. Mater., 2005, 293(1): 696-701. |
63 | Sato F, Jojo M, Matsuki H, et al. The operation of a magnetic micromachine for hyperthermia and its exothermic characteristic [J]. IEEE Trans. Magn., 2002, 38(5): 3362-3364. |
64 | Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers [J]. Nano Lett., 2009, 9(6): 2243-2245. |
65 | Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles [J]. Lab Chip, 2009, 9(18): 2715-2721. |
66 | Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions [J]. Lab Chip, 2014, 14(16): 3011-3020. |
67 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles [J]. Nat. Commun., 2018, 9(1): 1222. |
[1] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[2] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[3] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[4] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[5] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
[6] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[7] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[8] | 王之豪, 宋欣, 殷亚然, 张先明. 微流控纺丝中凝胶速率对螺旋纤维形貌的调控机制[J]. 化工学报, 2022, 73(11): 5158-5166. |
[9] | 马文峻, 陈卓, 凌斯达, 张经纬, 徐建鸿. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440. |
[10] | 湛伟, 刘西洋, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
[11] | 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429. |
[12] | 王燕鸿, 姚凯, 郎雪梅, 樊栓狮. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880. |
[13] | 张少博, 方莉, 高雪焘, 程文婷. 碱式硫酸镁晶须的可控制备及不同离子的影响机制[J]. 化工学报, 2021, 72(6): 3031-3040. |
[14] | 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848. |
[15] | 茹绍青, 武亚飞, 车黎明. 低过冷度石蜡Pickering乳液的制备和表征[J]. 化工学报, 2021, 72(4): 2309-2316. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 547
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||