1 |
Li M, Wang W, Zhang Z, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage [J]. Ind. Eng. Chem. Res., 2017, 56(12): 3297-3308.
|
2 |
Zhao X, Liu Y X, Yu Y R, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery [J]. Nanoscale, 2018, 10(26): 12595-12604.
|
3 |
Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering [J]. Adv. Drug Deliv. Rev., 2007, 59(4/5): 249-262.
|
4 |
Zhang M J, Chen T, Zhang P, et al. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination [J]. Soft Matter, 2020, 16(10): 2581-2593.
|
5 |
Zhang M J, Wang W, Yang X L, et al. Uniform microparticles with controllable highly interconnected hierarchical porous structures [J]. ACS Appl. Mater. Interfaces, 2015, 7(25): 13758-13767.
|
6 |
He F, Zhang M J, Wang W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release [J]. Adv. Mater. Technol., 2019, 4(6): 1800687.
|
7 |
Wu F, Wang W, Liu L, et al. Monodisperse hybrid microcapsules with an ultrathin shell of submicron thickness for rapid enzyme reactions [J]. J. Mater. Chem. B, 2015, 3(5): 796-803.
|
8 |
De La Vega J C, Elischer P, Schneider T, et al. Uniform polymer microspheres: monodispersity criteria, methods of formation and applications [J]. Nanomedicine, 2013, 8(2): 265-285.
|
9 |
蔡泉威, 巨晓洁, 谢锐, 等. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747.
|
|
Cai Q W, Ju X J, Xie R, et al. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747.
|
10 |
Damasceno P F, Engel M, Glotzer S C. Predictive self-assembly of polyhedra into complex structures [J]. Science, 2012, 337(6093): 453-457.
|
11 |
Sacanna S, Irvine W T M, Chaikin P M, et al. Lock and key colloids [J]. Nature, 2010, 464(7288): 575-578.
|
12 |
Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions [J]. Lab Chip, 2011, 11(9): 1587-1592.
|
13 |
Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions [J]. Angew. Chem. Int. Ed., 2007, 46(47): 8970-8974.
|
14 |
鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541.
|
|
Bao B, Zhao S L, Xu J H. Progress in studying fluid phase behaviours with micro- and nano-fluidic technology[J]. CIESC Journal, 2018, 69(11): 4530-4541.
|
15 |
Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions [J]. ACC. Chem. Res., 2014, 47(2): 373-384.
|
16 |
Wang B J, Prinsen P, Wang H Z, et al. Macroporous materials: microfluidic fabrication, functionalization and applications [J]. Chem. Soc. Rev., 2017, 46(3): 855-914.
|
17 |
Li W, Zhang L Y, Ge X H, et al. Microfluidic fabrication of microparticles for biomedical applications [J]. Chem. Soc. Rev., 2018, 47(15): 5646-5683.
|
18 |
Whitesides G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(7101): 368-373.
|
19 |
Abate A R, Weitz D A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics [J]. Small, 2009, 5(18): 2030-2032.
|
20 |
Meng Z J, Wang W, Liang X, et al. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules [J]. Lab Chip, 2015, 15(8): 1869-1878.
|
21 |
Deng N N, Meng Z J, Xie R, et al. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions [J]. Lab Chip, 2011, 11(23): 3963-3969.
|
22 |
Utada A S, Chu L Y, Fernandez-Nieves A, et al. Dripping, jetting, drops, and wetting: the magic of microfluidics [J]. MRS Bull., 2007, 32(9): 702-708.
|
23 |
Utada A S, Fernandez-Nieves A, Stone H A, et al. Dripping to jetting transitions in coflowing liquid streams [J]. Physical Review Letters, 2007, 99(9): 094502.
|
24 |
Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules [J]. Adv. Sci., 2018, 5(6): 1700960.
|
25 |
Lu Y, Fan H, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J]. Nature, 1999, 398(6724): 223-226.
|
26 |
Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712.
|
27 |
Warren S C, Messina L C, Slaughter L S, et al. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly [J]. Science, 2008, 320(5884): 1748-1752.
|
28 |
Velev O D, Lenhoff A M, Kaler E W. A class of microstructured particles through colloidal crystallization [J]. Science, 2000, 287(5461): 2240-2243.
|
29 |
Mou C L, Ju X J, Zhang L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464.
|
30 |
Kim T K, Yoon J J, Lee D S, et al. Gas foamed open porous biodegradable polymeric microspheres [J]. Biomaterials, 2006, 27(2): 152-159.
|
31 |
Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385(6615): 420-423.
|
32 |
Chu L Y, Kim J W, Shah R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17(17): 3499-3504.
|
33 |
Li Z L, Wang W, Li M, et al. Facile fabrication of bubble-propelled micromotors carrying nanocatalysts for water remediation [J]. Ind. Eng. Chem. Res., 2018, 57(13): 4562-4570.
|
34 |
Su Y Y, Zhang M J, Wang W, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions [J]. Ind. Eng. Chem. Res., 2019, 58(4): 1590-1600.
|
35 |
Chen L, Zhang M J, Zhang S Y, et al. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation [J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 35120-35131.
|
36 |
Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs [J]. J. Membr. Sci., 2019, 590: 117275.
|
37 |
Wei J, Ju X J, Zou X Y, et al. Multi-stimuli-responsive microcapsules for adjustable controlled-release [J]. Adv. Funct. Mater., 2014, 24(22): 3312-3323.
|
38 |
Yang X L, Ju X J, Mu X T, et al. Core-shell chitosan microcapsules for programmed sequential drug release [J]. ACS Appl. Mater. Interfaces, 2016, 8(16): 10524-10534.
|
39 |
Wang Y, Gao S, Ye W H, et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer [J]. Nat. Mater., 2006, 5(10): 791-796.
|
40 |
Pei Y T, Wei C, Hedrick J L, et al. Co-delivery of drugs and plasmid DNA for cancer therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 41-63.
|
41 |
Richardson T P, Peters M C, Ennett A B, et al. Polymeric system for dual growth factor delivery [J]. Nat. Biotechnol., 2001, 19(11): 1029-1034.
|
42 |
Jiang Y, Sun Q, Zhang L, et al. Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system [J]. J. Mater. Chem., 2009, 19(47): 9068-9074.
|
43 |
He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release [J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754.
|
44 |
Kreft O, Prevot M, Moehwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions [J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608.
|
45 |
Liu X, Zhou P, Huang Y, et al. Hierarchical proteinosomes for programmed release of multiple components [J]. Angew. Chem. Int. Ed., 2016, 55(25): 7095-7100.
|
46 |
Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes [J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150.
|
47 |
Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components [J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13(5): 325-332.
|
48 |
Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system [J]. Nature, 2005, 436(7050): 568-572.
|
49 |
He C, Tang Z, Tian H, et al. Co-delivery of chemotherapeutics and proteins for synergistic therapy [J]. Adv. Drug Deliv. Rev., 2016, 98: 64-76.
|
50 |
Mou C L, Wang W, Ju X J, et al. Dual-responsive microcarriers with sphere-in-capsule structures for co-encapsulation and sequential release [J]. J. Taiwan Inst. Chem. Eng., 2018, 98: 63-69.
|
51 |
Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat. Nanotechnol., 2007, 2(4): 249-255.
|
52 |
Ishiyama K, Sendoh M, Yamazaki A, et al. Swimming micro-machine driven by magnetic torque [J]. Sens. Actuators, A, 2001, 91(1/2): 141-144.
|
53 |
Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids [J]. Science, 2004, 303: 990-993.
|
54 |
Cai Q W, Ju X J, Zhang S Y, et al. Controllable fabrication of functional microhelices with droplet microfluidics [J]. ACS Appl. Mater. Interfaces, 2019, 11(49): 46241-46250.
|
55 |
Cai Q W, Ju X J, Chen C, et al. Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures [J]. Chem. Eng. J., 2019, 370: 925-937.
|
56 |
Tang M J, Wang W, Li, Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures [J]. Ind. Eng. Chem. Res., 2018, 57(29): 9430-9438.
|
57 |
Wang W, He X H, Zhang M J, et al. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices [J]. Macromol. Rapid Commun., 2017, 38(23): 1700429.
|
58 |
Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors [J]. J. Am. Chem. Soc., 2005, 127(22): 8058-8063.
|
59 |
Wang W, Zhang M J, Xie R, et al. Hole-shell microparticles from controllably evolved double emulsions [J]. Angew. Chem. Int. Ed., 2013, 52(31): 8084-8087.
|
60 |
Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Adv. Mater., 2012, 24(6): 811-816.
|
61 |
Peyer K E, Zhang L, Nelson B J. Localized non-contact manipulation using artificial bacterial flagella [J]. Appl. Phys. Lett., 2011, 99(17): 174101.
|
62 |
Mcnaughton B H, Anker J N, Kopelman R. Magnetic microdrill as a modulated fluorescent pH sensor [J]. J. Magn. Magn. Mater., 2005, 293(1): 696-701.
|
63 |
Sato F, Jojo M, Matsuki H, et al. The operation of a magnetic micromachine for hyperthermia and its exothermic characteristic [J]. IEEE Trans. Magn., 2002, 38(5): 3362-3364.
|
64 |
Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers [J]. Nano Lett., 2009, 9(6): 2243-2245.
|
65 |
Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles [J]. Lab Chip, 2009, 9(18): 2715-2721.
|
66 |
Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions [J]. Lab Chip, 2014, 14(16): 3011-3020.
|
67 |
Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles [J]. Nat. Commun., 2018, 9(1): 1222.
|