化工学报 ›› 2021, Vol. 72 ›› Issue (1): 27-41.doi: 10.11949/0438-1157.20201037

• 综述与专论 • 上一篇    下一篇

遗传算法在催化体系的全局结构优化中的应用

石向成1,2,3(),赵志坚1,2(),巩金龙1,2,3   

  1. 1.天津大学化工学院,绿色合成与转化教育部重点实验室,天津 300072
    2.天津化学化工协同创新中心,天津 300072
    3.天津大学-新加坡国立大学福州联合学院,福建 福州 350207
  • 收稿日期:2020-07-25 修回日期:2020-10-05 出版日期:2021-01-05 发布日期:2021-01-05
  • 通讯作者: 赵志坚 E-mail:e0444250@u.nus.edu;zjzhao@tju.edu.cn
  • 作者简介:石向成(1996—),男,博士研究生,e0444250@u.nus.edu
  • 基金资助:
    国家自然科学基金项目(21761132023)

Application of genetic algorithm in the global structure optimization of catalytic system

SHI Xiangcheng1,2,3(),ZHAO Zhijian1,2(),GONG Jinlong1,2,3   

  1. 1.Key Laboratory for Green Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China
    3.Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Fujian, China
  • Received:2020-07-25 Revised:2020-10-05 Published:2021-01-05 Online:2021-01-05
  • Contact: ZHAO Zhijian E-mail:e0444250@u.nus.edu;zjzhao@tju.edu.cn

摘要:

对催化体系进行全局结构优化,搜寻基态结构对预测催化剂结构、分析反应物的吸附特性、研究多相催化反应机理、构建实际反应路径等方面至关重要。遗传算法通过交叉、变异和选择等操作,模拟了自然淘汰进化过程,来搜索势能面上的基态结构。作为一种无偏优化算法,遗传算法的优化过程不依赖于输入结构,具有很强的全局搜索能力。对遗传算法在催化体系的全局结构优化问题中的应用进行了综述,介绍了遗传算法在实空间上进行全局结构优化的基本程序框架以及近年来结合并行计算、机器学习等技术发展的改进框架,并讨论了它们在团簇优化、负载型催化剂的结构优化问题上的相关应用,为遗传算法的进一步改进以及更广泛的应用提供理论指导。

关键词: 遗传算法, 全局优化, 催化, 势能面, 纳米结构, 分子模拟, 机器学习

Abstract:

Genetic algorithm is widely used to search for the global minimum structure that is important for analyzing the catalyst structure, the mechanism of heterogeneous catalytic reaction, and actual reaction pathway. By performing crossover, mutation and selection, genetic algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction to explore the potential energy surface. As an unbiased optimization algorithm, the optimization process of genetic algorithm does not depend on the input structure and has strong global search capabilities. This review summarizes the recent progress of the design and application of genetic algorithm, as a global structure optimizer, in the catalytic system. Starting with introducing the standard genetic algorithm framework for global structure optimization, this review also includes the advanced framework developed by introducing parallel computing and machine learning technique. Finally, some examples about the reported application of genetic algorithm in catalytic structure optimization are presented, such as the optimization of metallic clusters, supported catalysts, etc. This review might provide a significant insight into the further improvement of genetic algorithm and the wider application in catalytic system.

Key words: genetic algorithm, global optimization, catalysis, potential energy surface, nanostructure, molecular simulation, machine learning

中图分类号: 

  • O 643

图1

包含和不包含对称性时随机产生的LJ38(a)和LJ100(b)团簇的能量分布(能量值是相对基态结构的相对值)[29]"

图2

父代通过几何剪贴法交叉形成新子代的过程"

图3

基于池的遗传算法框架及其性能测试[21]"

图4

结合主动学习进行加速的遗传算法框架及性能表现"

图5

不同尺寸和电荷下的Au团簇的基态结构"

图6

不同尺寸硫醇配体保护的Au团簇及其成核、成长过程[4]"

图7

遗传算法所得到的各类负载型催化剂的基态结构"

图8

Pt7团簇在α-Al2O3表面上的演化过程[9]"

图9

α-Al2O3(0001)吸附的Pt8H4团簇(a),γ-Al2O3(100)吸附的Pt8H5团簇(b),α-Al2O3(0001)吸附的Pt8H24团簇(c)和γ-Al2O3(100)吸附的Pt8H24团簇(d)的基态结构[91]"

图10

O2在MgO(100)负载的Au12团簇的吸附过程[92]"

1 Johnston R L. Evolving better nanoparticles: genetic algorithms for optimising cluster geometries[J]. Dalton Transactions, 2003, (22): 4193-4207.
2 Mcleod A S, Gladden L F. Heterogeneous catalyst design using stochastic optimization algorithms[J]. Journal of Chemical Information and Computer Sciences, 2000, 40(4): 981-987.
3 Davis J B A, Horswell S L, Johnston R L. Application of a parallel genetic algorithm to the global optimization of gas-phase and supported gold–iridium sub-nanoalloys[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3759-3765.
4 Liu C, Pei Y, Sun H, et al. The nucleation and growth mechanism of thiolate-protected Au nanoclusters[J]. Journal of the American Chemical Society, 2015, 137(50): 15809-15816.
5 Reichenbach T, Walter M, Moseler M, et al. Effects of gas-phase conditions and particle size on the properties of Cu(111)-supported ZnyOx particles revealed by global optimization and ab initio thermodynamics[J]. The Journal of Physical Chemistry C, 2019, 123(51): 30903-30916.
6 Fang Y, Gong X. Genetic algorithm aided density functional theory simulations unravel the kinetic nature of Au(100) in catalytic CO oxidation[J]. Chinese Chemical Letters, 2019, 30(6): 1346-1350.
7 Ding X L, Liao H L, Zhang Y, et al. Geometric and electronic properties of gold clusters doped with a single oxygen atom[J]. Physical Chemistry Chemical Physics, 2016, 18(41): 28960-28972.
8 Zandkarimi B, Alexandrova A N. Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 460-467.
9 Zhai H, Alexandrova A N. Local fluxionality of surface-deposited cluster catalysts: the case of Pt7 on Al2O3[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1696-1702.
10 Jäger M, Schäfer R, Johnston R L. First principles global optimization of metal clusters and nanoalloys[J]. Advances in Physics: X, 2018, 3(1): 1516514.
11 Stillinger F H. Exponential multiplicity of inherent structures[J]. Physical Review E, 1999, 59(1): 48-51.
12 Sierka M. Synergy between theory and experiment in structure resolution of low-dimensional oxides[J]. Progress in Surface Science, 2010, 85(9/10/11/12): 398-434.
13 Hartke B. Global geometry optimization of clusters using genetic algorithms[J]. The Journal of Physical Chemistry, 1993, 97(39): 9973-9976.
14 Deaven D M, Ho K M. Molecular geometry optimization with a genetic algorithm[J]. Physical Review Letters, 1995, 75(2): 288-291.
15 Froemming N S, Henkelman G. Optimizing core-shell nanoparticle catalysts with a genetic algorithm[J]. The Journal of Chemical Physics, 2009, 131(23): 234103.
16 Vilhelmsen L B, Hammer B. A genetic algorithm for first principles global structure optimization of supported nano structures[J]. The Journal of Chemical Physics, 2014, 141(4): 044711.
17 Yang H, Wong M W. Automatic conformational search of transition states for catalytic reactions using genetic algorithm[J]. The Journal of Physical Chemistry A, 2019, 123(47): 10303-10314.
18 Dittner M, Hartke B. Globally optimal catalytic fields – inverse design of abstract embeddings for maximum reaction rate acceleration[J]. Journal of Chemical Theory and Computation, 2018, 14(7): 3547-3564.
19 Hartke B. Global cluster geometry optimization by a phenotype algorithm with niches: location of elusive minima, and low-order scaling with cluster size[J]. Journal of Computational Chemistry, 1999, 20(16): 1752-1759.
20 Oganov A R, Glass C W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications[J]. The Journal of Chemical Physics, 2006, 124(24): 244704.
21 Shayeghi A, Götz D, Davis J B A, et al. Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters[J]. Physical Chemistry Chemical Physics, 2015, 17(3): 2104-2112.
22 Zhang J, Hu P, Wang H. Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction[J]. The Journal of Physical Chemistry C, 2020, 124(19): 10483-10494.
23 Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. Nature, 2020, 581(7807): 178-183.
24 Bisbo M K, Hammer B. Efficient global structure optimization with a machine-learned surrogate model[J]. Physical Review Letters, 2020, 124(8): 086102.
25 Le T C, Winkler D A. Discovery and optimization of materials using evolutionary approaches[J]. Chemical Reviews, 2016, 116(10): 6107-6132.
26 Gobin O C, Schüth F. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms[J]. Journal of Combinatorial Chemistry, 2008, 10(6): 835-846.
27 Tipton W W, Hennig R G. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials[J]. Journal of Physics: Condensed Matter, 2013, 25(49): 495401.
28 Rodemerck U, Baerns M, Holena M, et al. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials[J]. Applied Surface Science, 2004, 223(1): 168-174.
29 Lv J, Wang Y, Zhu L, et al. Particle-swarm structure prediction on clusters[J]. The Journal of Chemical Physics, 2012, 137(8): 084104.
30 Lyakhov A O, Oganov A R, Stokes H T, et al. New developments in evolutionary structure prediction algorithm USPEX[J]. Computer Physics Communications, 2013, 184(4): 1172-1182.
31 Wang Y, Lv J, Zhu L, et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070.
32 Zhai H, Alexandrova A N. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization[J]. Journal of Chemical Theory and Computation, 2016, 12(12): 6213-6226.
33 Hajinazar S, Sandoval E D, Cullo A J, et al. Multitribe evolutionary search for stable Cu–Pd–Ag nanoparticles using neural network models[J]. Physical Chemistry Chemical Physics, 2019, 21(17): 8729-8742.
34 Jennings P C, Lysgaard S, Hummelshøj J S, et al. Genetic algorithms for computational materials discovery accelerated by machine learning[J]. npj Computational Materials, 2019, 5(1): 46.
35 Curtis F, Li X, Rose T, et al. GAtor: a first-principles genetic algorithm for molecular crystal structure prediction[J]. Journal of Chemical Theory and Computation, 2018, 14(4): 2246-2264.
36 Maldonis J J, Xu Z, Song Z, et al. StructOpt: a modular materials structure optimization suite incorporating experimental data and simulated energies[J]. Computational Materials Science, 2019, 160: 1-8.
37 Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
38 Pereira S R M, Clerc F, Farrusseng D, et al. Effect of the genetic algorithm parameters on the optimisation of heterogeneous catalysts[J]. QSAR & Combinatorial Science, 2005, 24(1): 45-57.
39 Yee L, Yong G, Zong-Ben X. Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis[J]. IEEE Transactions on Neural Networks, 1997, 8(5): 1165-1176.
40 Rata I, Shvartsburg A A, Horoi M, et al. Single-parent evolution algorithm and the optimization of Si clusters[J]. Physical Review Letters, 2000, 85(3): 546-549.
41 Jäger M, Schäfer R, Johnston R L. GIGA: a versatile genetic algorithm for free and supported clusters and nanoparticles in the presence of ligands[J]. Nanoscale, 2019, 11(18): 9042-9052.
42 Jørgensen M S, Groves M N, Hammer B. Combining evolutionary algorithms with clustering toward rational global structure optimization at the atomic scale[J]. Journal of Chemical Theory and Computation, 2017, 13(3): 1486-1493.
43 Supady A, Blum V, Baldauf C. First-principles molecular structure search with a genetic algorithm[J]. Journal of Chemical Information and Modeling, 2015, 55(11): 2338-2348.
44 Davis J B A, Shayeghi A, Horswell S L, et al. The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of IrN(N = 10–20) clusters[J]. Nanoscale, 2015, 7(33): 14032-14038.
45 Hussein H A, Demiroglu I, Johnston R L. Application of a parallel genetic algorithm to the global optimization of medium-sized Au–Pd sub-nanometre clusters[J]. The European Physical Journal B, 2018, 91(2): 34.
46 Demiroglu I, Yao K, Hussein H A, et al. DFT global optimization of gas-phase subnanometer Ru–Pt clusters[J]. The Journal of Physical Chemistry C, 2017, 121(20): 10773-10780.
47 Hussein H A, Davis J B A, Johnston R L. DFT global optimisation of gas-phase and MgO-supported sub-nanometre AuPd clusters[J]. Physical Chemistry Chemical Physics, 2016, 18(37): 26133-26143.
48 Habershon S, Harris K D M, Johnston R L. Development of a multipopulation parallel genetic algorithm for structure solution from powder diffraction data[J]. Journal of Computational Chemistry, 2003, 24(14): 1766-1774.
49 Fan T E, Shao G F, Ji Q S, et al. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters[J]. Computer Physics Communications, 2016, 208: 64-72.
50 Jiang B, Li J, Guo H. Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial - neural network approach[J]. International Reviews in Physical Chemistry, 2016, 35(3): 479-506.
51 Li H, Zhang Z, Liu Z. Application of artificial neural networks for catalysis: a review[J]. Catalysts, 2017, 7(10): 306.
52 Le T, Epa V C, Burden F R, et al. Quantitative structure-property relationship modeling of diverse materials properties[J]. Chemical Reviews, 2012, 112(5): 2889-2919.
53 Kamath A, Vargas-Hernández R A, Krems R V, et al. Neural networks vs Gaussian process regression for representing potential energy surfaces: a comparative study of fit quality and vibrational spectrum accuracy[J]. The Journal of Chemical Physics, 2018, 148(24): 241702.
54 Chmiela S, Tkatchenko A, Sauceda H E, et al. Machine learning of accurate energy-conserving molecular force fields[J]. Science Advances, 2017, 3(5): e1603015.
55 Chen X, Jørgensen M S, Li J, et al. Atomic energies from a convolutional neural network[J]. Journal of Chemical Theory and Computation, 2018, 14(7): 3933-3942.
56 Rupp M, Tkatchenko A, Müller K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Physical Review Letters, 2012, 108(5): 058301.
57 Ramakrishnan R, Dral P O, Rupp M, et al. Quantum chemistry structures and properties of 134 kilo molecules[J]. Scientific Data, 2014, 1(1): 140022.
58 Behler J. Constructing high-dimensional neural network potentials: a tutorial review[J]. International Journal of Quantum Chemistry, 2015, 115(16): 1032-1050.
59 Zhang L, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation[J]. Physical Review Materials, 2019, 3(2): 023804.
60 Kolsbjerg E L, Peterson A A, Hammer B. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles[J]. Physical Review B, 2018, 97(19): 195424.
61 Sørensen K H, Jørgensen M S, Bruix A, et al. Accelerating atomic structure search with cluster regularization[J]. The Journal of Chemical Physics, 2018, 148(24): 241734.
62 Jørgensen M S, Larsen U F, Jacobsen K W, et al. Exploration versus exploitation in global atomistic structure optimization[J]. The Journal of Physical Chemistry A, 2018, 122(5): 1504-1509.
63 Grosan C, Abraham A. Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews [M]. Berlin, Heidelberg: Springer-Verlag, 2007: 1-17.
64 Chen P H, Shahandashti S M. Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints[J]. Automation in Construction, 2009, 18(4): 434-443.
65 Zacharias C R, Lemes M R, Dal Pino A. Combining genetic algorithm and simulated annealing: a molecular geometry optimization study[J]. Journal of Molecular Structure: THEOCHEM, 1998, 430: 29-39.
66 Cai W, Jiang H, Shao X. Global optimization of lennard-jones clusters by a parallel fast annealing evolutionary algorithm[J]. Journal of Chemical Information and Computer Sciences, 2002, 42(5): 1099-1103.
67 Zeiri Y. Study of the lowest energy structure of atomic clusters using a genetic algorithm[J]. Computer Physics Communications, 1997, 103(1): 28-42.
68 Alexandrova A N, Boldyrev A I. Search for the Lin0/+1/-1 (n = 5-7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters[J]. Journal of Chemical Theory and Computation, 2005, 1(4): 566-580.
69 Dieterich J M, Hartke B. OGOLEM: global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach[J]. Molecular Physics, 2010, 108(3/4): 279-291.
70 Vargas J A, Buendía F, Beltrán M R. New AuN (N = 27–30) lowest energy clusters obtained by means of an improved DFT–genetic algorithm methodology[J]. The Journal of Physical Chemistry C, 2017, 121(20): 10982-10991.
71 Yamazoe S, Koyasu K, Tsukuda T. Nonscalable oxidation catalysis of gold clusters[J]. Accounts of Chemical Research, 2013, 47(3): 816-824.
72 Assadollahzadeh B, Schwerdtfeger P. A systematic search for minimum structures of small gold clusters Aun (n=2–20) and their electronic properties[J]. The Journal of Chemical Physics, 2009, 131(6): 064306.
73 Li T X, Yin S Y, Ji Y L, et al. A genetic algorithm study on the most stable disordered and ordered configurations of Au38–55[J]. Physics Letters A, 2000, 267(5/6): 403-407.
74 Shayeghi A, Johnston R L, Schäfer R. Evaluation of photodissociation spectroscopy as a structure elucidation tool for isolated clusters: a case study of Ag4+ and Au4+[J]. Physical Chemistry Chemical Physics, 2013, 15(45): 19715-19723.
75 Gilb S, Weis P, Furche F, et al. Structures of small gold cluster cations (Aun+, n<14): ion mobility measurements versus density functional calculations[J]. The Journal of Chemical Physics, 2002, 116(10): 4094-4101.
76 Hong L, Wang H, Cheng J, et al. Atomic structures and electronic properties of small Au–Ag binary clusters: effects of size and composition[J]. Computational and Theoretical Chemistry, 2012, 993: 36-44.
77 Kang X, Li Y, Zhu M, et al. Atomically precise alloy nanoclusters: syntheses, structures, and properties[J]. Chemical Society Reviews, 2020, 49: 6443-6514.
78 Xie S, Tsunoyama H, Kurashige W, et al. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping[J]. ACS Catalysis, 2012, 2(7): 1519-1523.
79 Liu C, Ren X, Lin F, et al. Structure of the Au23-xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants[J]. Angewandte Chemie International Edition, 2019, 58(33): 11335-11339.
80 Heiles S, Logsdail A J, Schäfer R, et al. Dopant-induced 2D–3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au–Ag nanoalloys[J]. Nanoscale, 2012, 4(4): 1109-1115.
81 Davis J B A, Horswell S L, Johnston R L. Global optimization of 8–10 atom palladium–iridium nanoalloys at the DFT level[J]. The Journal of Physical Chemistry A, 2013, 118(1): 208-214.
82 Heard C J, Johnston R L. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters[J]. The European Physical Journal D, 2013, 67(2): 34.
83 Luo Z, Nachammai V, Zhang B, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)–thiolate complexes to evolution of Au25 nanoclusters[J]. Journal of the American Chemical Society, 2014, 136(30): 10577-10580.
84 Hussein H A, Demiroglu I, Johnston R L. Application of a parallel genetic algorithm to the global optimization of medium-sized Au–Pd sub-nanometre clusters[J]. The European Physical Journal B, 2018, 91(2): 34.
85 Bailey M S, Wilson N T, Roberts C, et al. Structures, stabilities and ordering in Ni-Al nanoalloy clusters[J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2003, 25(1): 41-55.
86 Zhang J, Glezakou V A, Rousseau R, et al. NWPEsSe: an adaptive-learning global optimization algorithm for nanosized cluster systems[J]. Journal of Chemical Theory and Computation, 2020, 16(6): 3947-3958.
87 Sierka M, Todorova T K, Kaya S, et al. Interplay between theory and experiment in the quest for silica with reduced dimensionality grown on a Mo(112) surface[J]. Chemical Physics Letters, 2006, 424(1/2/3): 115-119.
88 Hjorth L A, Jørgen M J, Blomqvist J, et al. The atomic simulation environment—a Python library for working with atoms[J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002.
89 Vilhelmsen L B, Walton K S, Sholl D S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74[J]. Journal of the American Chemical Society, 2012, 134(30): 12807-12816.
90 He Y, Liu J C, Luo L, et al. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition[J]. Proceedings of the National Academy of Sciences, 2018, 115(30): 7700-7705.
91 Sun G, Alexandrova A N, Sautet P. Pt8 cluster on alumina under a pressure of hydrogen: support-dependent reconstruction from first-principles global optimization[J]. The Journal of Chemical Physics, 2019, 151(19): 194703.
92 Vilhelmsen L B, Hammer B. Systematic study of Au6 to Au12 gold clusters on MgO(100) F-centers using density-functional theory[J]. Physical Review Letters, 2012, 108(12): 126101.
[1] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[2] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[3] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[4] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[5] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[6] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[7] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[8] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[9] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[10] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[11] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[12] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[13] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[14] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[15] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!