化工学报 ›› 2021, Vol. 72 ›› Issue (1): 61-70.DOI: 10.11949/0438-1157.20201201
南皓雄1,2(),赵辰孜1,袁洪3(),卢洋1,沈馨1,朱高龙1,4,刘全兵2(),黄佳琦3,张强1()
收稿日期:
2020-08-21
修回日期:
2020-11-06
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
袁洪,刘全兵,张强
作者简介:
南皓雄(1986—),男,博士,讲师,基金资助:
NAN Haoxiong1,2(),ZHAO Chenzi1,YUAN Hong3(),LU Yang1,SHEN Xin1,ZHU Gaolong1,4,LIU Quanbing2(),HUANG Jiaqi3,ZHANG Qiang1()
Received:
2020-08-21
Revised:
2020-11-06
Online:
2021-01-05
Published:
2021-01-05
Contact:
YUAN Hong,LIU Quanbing,ZHANG Qiang
摘要:
固态锂金属电池具有理论能量密度高、安全性高等优势,是极有前景的下一代储能系统。然而,固体电极与固体电解质之间有限的固–固接触严重阻碍了界面离子的传输。因此,增加外部压力是增加固–固接触及延长电池循环寿命的重要途径。同时,在充放电过程中,电极体积变化产生的内应力也将影响电池界面特性。通过介绍两种基本物理接触模型,结合硫化物、氧化物、聚合物电解质以及金属锂的物理性质,综述了外压和内部应力对电解质、电极及电池的影响。最后,对外压力与内应力在全固态金属锂电池中的作用进行了总结和展望。
中图分类号:
南皓雄, 赵辰孜, 袁洪, 卢洋, 沈馨, 朱高龙, 刘全兵, 黄佳琦, 张强. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70.
NAN Haoxiong, ZHAO Chenzi, YUAN Hong, LU Yang, SHEN Xin, ZHU Gaolong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70.
1 | Zhang Y J, Li X, Dong P, et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42796-42803. |
2 | Wu G, Li X, Zhang Z, et al. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes[J]. Journal of Materials Chemistry A, 2020, 8(7): 3763-3770. |
3 | 叶戈, 袁洪, 赵辰孜, 等. 全固态锂硫电池正极中离子输运与电子传递的平衡[J]. 储能科学与技术, 2020, 9(2): 339-345. |
Ye G, Yuan H, Zhao C Z, et al. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. | |
4 | Jung S H, Kim U H, Kim J H, et al. Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials, 2020, 10(6): 1903360. |
5 | 李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
Li H. All-solid-state lithium batteries: dream shines into reality[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. | |
6 | Hou L P, Yuan H, Zhao C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
7 | Wood K N, Noked M, Dasgupta N P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672. |
8 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
Li W J, Xu H Y, Yang Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
9 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
10 | Doux J M, Nguyen H, Tan D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
11 | Doux J M, Yang Y Y C, Tan D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
12 | LePage W S, Chen Y, Kazyak E, et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A89-A97. |
13 | Harry K J, Higa K, Srinivasan V, et al. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode[J]. Journal of the Electrochemical Society, 2016, 163(10): A2216-A2224. |
14 | Persson B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4): 201-227. |
15 | Wang P, Qu W J, Song W L, et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(27): 1900950. |
16 | Tian H K, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
17 | Fuller K N G, Tabor D. The effect of surface roughness on the adhesion of elastic solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1975, 345(1642): 327-342. |
18 | Sakanoi R, Shimazaki T, Xu J X, et al. Communication: different behavior of Young's modulus and fracture strength of CeO2: density functional theory calculations[J]. Journal of Chemical Physics, 2014, 140(12): 121102. |
19 | Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396-A404. |
20 | Sun Y Z, Huang J Q, Zhao C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China-Chemistry, 2017, 60(12): 1508-1526. |
21 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
Huang Z, Yang J, Chen X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field [J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
22 | Lu Y, Gu S, Hong X, et al. Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery[J]. Energy Storage Materials, 2018, 11: 16-23. |
23 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10: 682-686. |
24 | Zhang Z, Chen S, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565. |
25 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
26 | Hakari T, Sato Y, Yoshimi S, et al. Favorable carbon conductive additives in Li3PS4 composite positive electrode prepared by ball-milling for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164(12): A2804-A2811. |
27 | Ohtomo T, Hayashi A, Tatsumisago M, et al. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J]. Journal of Solid State Electrochemistry, 2013, 17(10): 2551-2557. |
28 | Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3: 2261. |
29 | Agostini M, Aihara Y, Yamada T, et al. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte[J]. Solid State Ionics, 2013, 244: 48-51. |
30 | Zhu J, Zhao J, Xiang Y, et al. Chemo-mechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries[J]. Chemistry of Materials, 2020, 32: 4998-5008. |
31 | Paolella A, Zhu W, Xu G L, et al. Understanding the reactivity of a thin Li1.5Al0.5Ge1.5(PO4)3 solid-state electrolyte toward metallic lithium anode[J]. Advanced Energy Materials, 2020,10(32): 2001497. |
32 | Kobayashi Y, Miyashiro H, Takeuchi T, et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics, 2002, 152/153: 137-142. |
33 | Krauskopf T, Mogwitz B, Hartmann H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. Advanced Energy Materials, 2020, 10(27): 2000945. |
34 | Sastre J, Priebe A, Dobeli M, et al. Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities[J]. Advanced Materials Interfaces, 2020, 7(17): 2000425. |
35 | Lu Y, Huang X, Song Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290. |
36 | Lu Y, Huang X, Ruan Y D, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39): 18853-18858. |
37 | Santosh K C, Longo R C, Xiong K, et al. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries[J]. Solid State Ionics, 2014, 261: 100-105. |
38 | Huang X, Lu Y, Song Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-217. |
39 | Tippens J, Miers J C, Afshar A, et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte[J]. ACS Energy Letters, 2019, 4(6): 1475-1483. |
40 | Liang J N, Luo J, Sun Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
41 | Yu S, Schmidt R D, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206. |
42 | Lopez J, Mackanic D G, Cui Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
43 | Wang H, Lin C, Yan X H, et al. Mechanical property-reinforced PEO/PVDF/LiClO4/SN blend all solid polymer electrolyte for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 869: 114156. |
44 | Gregorio V, Garcia N, Tiemblo P. Solvent-free and scalable procedure to prepare PYR13TFSI/LiTFSI/PVDF-HFP thermoplastic electrolytes with controlled phase separation and enhanced Li ion diffusion[J]. Membranes, 2019, 9(4): 50. |
45 | Pan X N, Liu T Y, Kautz D J, et al. High-performance N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2018, 403: 127-136. |
46 | Yang Y, Wu Q, Wang D, et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries[J]. Journal of Membrane Science, 2020, 595: 117549. |
47 | Kim G T, Appetecchi G B, Carewska M, et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids[J]. Journal of Power Sources, 2010, 195(18): 6130-6137. |
48 | Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
49 | Ganser M, Hildebrand F E, Kamlah M, et al. A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 681-713. |
50 | Smith P, Pennings A J. Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide[J]. Journal of Polymer Science: Polymer Physics Edition, 1977, 15(3): 523-540. |
51 | Joo J H, Bae Y C, Sun Y K. Phase behaviors of solid polymer electrolytes/salt system in lithium secondary battery by group-contribution method: the pressure effect[J]. Polymer, 2006, 47(1): 211-217. |
52 | Choi Y S, Bae Y C. The effect of pressure on phase behaviors of solid polymer electrolyte/salt systems in lithium battery[J]. Solid State Ionics, 2003, 158(3/4): 243-251. |
53 | Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600. |
54 | Xu C, Ahmad Z, Aryanfar A, et al. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): 57-61. |
55 | Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
56 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2020, 36: 2007070. |
Wang H, An H W, Shan H M, et al. Research progress on interfaces of all-solid-state batteries [J]. Acta Physico-Chimica Sinica, 2020, 36: 2007070. | |
57 | Kaboli S, Demers H, Paolella A, et al. Behavior of solid electrolyte in Li-polymer battery with NMC cathode viain-situ scanning electron microscopy[J]. Nano Letters, 2020, 20(3): 1607-1613. |
58 | Yao X Y, Huang B X, Yin J Y, et al. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science[J]. Chinese Physics B, 2016, 25(1): 216-229. |
59 | Nagao M, Imade Y, Narisawa H, et al. Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous carbon electrodes[J]. Journal of Power Sources, 2013, 243: 60-64. |
60 | Yan H, Wang H, Wang D, et al. In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5): 3280-3287. |
61 | Suzuki K, Mashirno N, Ikeda Y, et al. High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing[J]. ACS Applied Energy Materials, 2018, 1(6): 2373-2377. |
62 | Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): 1902125. |
63 | Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
64 | Ji Y, Zhou C K, Lin F, et al. Submicron-sized Nb-doped lithium garnet for high ionic conductivity solid electrolyte and performance of quasi-solid-state lithium battery[J]. Materials, 2020, 13(3): 560. |
65 | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 2070045. |
66 | Krauskopf T, Hartmann H, Zeier W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
67 | Wang M, Sakamoto J. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface[J]. Journal of Power Sources, 2018, 377: 7-11. |
68 | Wang M, Wolfenstine J B, Sakamoto J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface[J]. Electrochimica Acta, 2019, 296: 842-847. |
69 | Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111. |
70 | Wang M J, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density[J]. Joule, 2019, 3(9): 2165-2178. |
71 | Barai P, Higa K, Srinivasan V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 20493-20505. |
72 | Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
73 | Kim S, Jung C, Kim H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte[J]. Advanced Energy Materials, 2020, 10(12): 1903993. |
74 | Sharafi A, Kazyak E, Davis A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
75 | Yamamoto M, Takahashi M, Terauchi Y, et al. Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery[J]. Journal of the Ceramic Society of Japan, 2017, 125(5): 391-395. |
76 | Zhang W B, Schroder D, Arlt T, et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(20): 9929-9936. |
77 | Koerver R, Aygun I, Leichtweiss T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
78 | Ito S, Fujiki S, Yamada T, et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte[J]. Journal of Power Sources, 2014, 248: 943-950. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[6] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[7] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[8] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[9] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[10] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[11] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[12] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[13] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[14] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[15] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||