化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2926-2934.DOI: 10.11949/0438-1157.20230450
收稿日期:
2023-05-08
修回日期:
2023-07-06
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
郑仁朝
作者简介:
汤晓玲(1984—),女,博士,副教授,tangxl@zjut.edu.cn
基金资助:
Xiaoling TANG(), Jiarui WANG, Xuanye ZHU, Renchao ZHENG()
Received:
2023-05-08
Revised:
2023-07-06
Online:
2023-07-05
Published:
2023-08-31
Contact:
Renchao ZHENG
摘要:
卤醇脱卤酶催化1,3-二氯-2-丙醇(1,3-DCP)合成手性环氧氯丙烷(ECH)具有反应条件温和、原子经济性高、环境友好等优势,应用前景广阔。由于该路线中底物与产物在水相中稳定性差、易分解,因此构建了水与有机溶剂两相反应体系。为了提高酶在有机溶剂中的稳定性,建立了以改性SiO2颗粒为固体乳化剂的Pickering乳液酶催化体系并对其催化性能进行表征。结果表明,基于Pickering乳液的卤醇脱卤酶在水-有机溶剂两相体系中的稳定性显著提高,其半衰期从9.7 h提高至20.1 h。进一步优化了反应条件,以50 mmol/L 1,3-DCP为底物,反应40 min (S)-ECH产率达93.6%,目标产物光学纯度(e.e.值)为95.3%,为高效生物催化合成手性ECH奠定了基础。
中图分类号:
汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934.
Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system[J]. CIESC Journal, 2023, 74(7): 2926-2934.
图2 (S)-ECH和1,3-DCP在水相和水-乙酸乙酯(体积比4∶6)中的稳定性
Fig.2 Stability of (S)-ECH and 1,3-DCP in aqueous and water-ethyl acetate two-phase system(volume ratio 4∶6)
有机相种类 | 产率/% | e.e./% |
---|---|---|
乙酸乙酯 | 70.31 | 94.36 |
乙酸异丙酯 | 86.17 | 93.77 |
乙酸异丁酯 | 87.26 | 95.19 |
磷酸三辛酯 | 63.42 | 92.56 |
环己烷 | 62.35 | 85.16 |
正己烷 | 60.18 | 86.75 |
正庚烷 | 68.26 | 90.46 |
正辛烷 | 66.66 | 87.08 |
异辛烷 | 63.17 | 87.35 |
表1 不同有机相种类对反应的影响
Table 1 Influence of organic phase with different types on catalytic reaction
有机相种类 | 产率/% | e.e./% |
---|---|---|
乙酸乙酯 | 70.31 | 94.36 |
乙酸异丙酯 | 86.17 | 93.77 |
乙酸异丁酯 | 87.26 | 95.19 |
磷酸三辛酯 | 63.42 | 92.56 |
环己烷 | 62.35 | 85.16 |
正己烷 | 60.18 | 86.75 |
正庚烷 | 68.26 | 90.46 |
正辛烷 | 66.66 | 87.08 |
异辛烷 | 63.17 | 87.35 |
1 | Jin H X, Ouyang X K. Enzymatic approaches to the preparation of chiral epichlorohydrin[J]. RSC Advances, 2015, 5(113): 92988-92994. |
2 | van Leeuwen J G E, Wijma H J, Floor R J, et al. Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: from chemical waste to enantiopure building blocks[J]. Chembiochem, 2012, 13(1): 137-148. |
3 | Kabat M M, Daniewski A R, Burger W. A convenient synthesis of R-(-)-carnitine from R-(-)-epichlorohydrin[J]. Tetrahedron: Asymmetry, 1997, 8(16): 2663-2665. |
4 | Wu J Y, Liu C, Jiang Y C, et al. Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent[J]. Catalysis Communications, 2010, 11(8): 727-731. |
5 | 卢定强, 涂清波, 凌岫泉, 等. 手性环氧氯丙烷的制备及其药物应用[J]. 有机化学, 2009, 29(8): 1209-1216. |
Lu D Q, Tu Q B, Ling X Q, et al. Preparation and drug application of chiral epichlorohydrin[J]. Chinese Journal of Organic Chemistry, 2009, 29(8): 1209-1216. | |
6 | Kureshy R I, Khan N H, Abdi S H R, et al. Simultaneous production of chirally enriched epoxides and 1,2-diols from racemic epoxides via hydrolytic kinetic resolution(HKR)[J]. Journal of Molecular Catalysis A: Chemical, 2002, 179(1/2): 73-77. |
7 | Jacobsen E N, Kakiuchi F, Konsler R G, et al. Enantioselective catalytic ring opening of epoxides with carboxylic acids[J]. Tetrahedron Letters, 1997, 38(5): 773-776. |
8 | Zhang X J, Deng H Z, Liu N, et al. Molecular modification of a halohydrin dehalogenase for kinetic regulation to synthesize optically pure (S)-epichlorohydrin[J]. Bioresource Technology, 2019, 276: 154-160. |
9 | Xue F, Gao J, Zhang L, et al. Identification and characterization of a novel halohydrin dehalogenase from Bradyrhizobium erythrophlei and its performance in preparation of both enantiomers of epichlorohydrin[J]. Catalysis Letters, 2018, 148(4): 1181-1189. |
10 | Xue F, Liu Z Q, Wan N W, et al. Engineering the epoxide hydrolase from Agromyces mediolanus for enhanced enantioselectivity and activity in the kinetic resolution of racemic epichlorohydrin[J]. RSC Advances, 2015, 5(40): 31525-31532. |
11 | 邹树平, 姜镇涛, 王志才, 等. 环氧化物水解酶交联细胞聚集体催化合成(R)-环氧氯丙烷[J]. 化工学报, 2020, 71(9): 4238-4245. |
Zou S C, Jiang Z T, Wang Z C, et al. Synthesis of (R)-epichlorohydrin catalyzed by cross-linked cell aggregates of epoxide hydrolase [J]. CIESC Journal, 2020, 71(9): 4238-4245. | |
12 | Park J B, Clark D S. Deactivation mechanisms of chloroperoxidase during biotransformations[J]. Biotechnology and Bioengineering, 2006, 93(6): 1190-1195. |
13 | Hasnaoui-Dijoux G, Majerić Elenkov M, Lutje Spelberg J H, et al. Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening[J]. ChemBioChem, 2008, 9(7): 1048-1051. |
14 | Koopmeiners J, Halmschlag B, Schallmey M, et al. Biochemical and biocatalytic characterization of 17 novel halohydrin dehalogenases[J]. Applied Microbiology and Biotechnology, 2016, 100(17): 7517-7527. |
15 | Tang X L, Ye G Y, Wan X Y, et al. Rational design of halohydrin dehalogenase for efficient chiral epichlorohydrin production with high activity and enantioselectivity in aqueous-organic two-phase system[J]. Biochemical Engineering Journal, 2020, 161: 107708. |
16 | Albert C, Beladjine M, Tsapis N, et al. Pickering emulsions: preparation processes, key parameters governing their properties and potential for pharmaceutical applications[J]. Journal of Controlled Release, 2019, 309: 302-332. |
17 | Kiokias S, Varzakas T. Innovative applications of food-related emulsions[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(15): 3165-3172. |
18 | Alam M M, Aramaki K. Liquid crystal-based emulsions: progress and prospects[J]. Journal of Oleo Science, 2014, 63(2): 97-108. |
19 | 喻明英, 王靖, 杨成, 等. Pickering乳液在化妆品中的应用研究进展[J]. 日用化学工业, 2019, 49(6): 398-402. |
Yu M Y, Wang J, Yang C, et al. Advances in the applications of Pickering emulsion in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2019, 49(6): 398-402. | |
20 | Yang Y Q, Fang Z W, Chen X, et al. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications[J]. Frontiers in Pharmacology, 2017, 8: 287. |
21 | 徐刘佳, 郑明明. 皮克林乳液酶反应体系的构建与应用研究进展[J].生物技术通报, 2021, 37(2): 187-194. |
Xu L J, Zheng M M. Research progress on the construction and application of Pickering emulsion enzymatic reaction system[J]. Biotechnology Bulletin, 2021, 37(2): 187-194. | |
22 | Jiang H, Sheng Y F, Ngai T. Pickering emulsions: versatility of colloidal particles and recent applications[J]. Current Opinion in Colloid & Interface Science, 2020, 49: 1-15. |
23 | Li C P, Pi Y B, Liu S, et al. Phosphotungstate-functionalized mesoporous Janus silica nanosheets for reaction-controlled Pickering interfacial catalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13501-13513. |
24 | Peng F J, Xu J, Zeng X H, et al. Metal-decorated Pickering emulsion for continuous flow catalysis [J]. Particle & Particle Systems Characterization, 2020, 37(1): 1900382. |
25 | 白佩灵, 尤雪瑞, 郝雅娟, 等. 无搅拌条件下的Pickering乳液用于脂肪酶催化合成酯的反应[J]. 日用化学工业, 2018, 48(4): 210-215. |
Bai P L, You X R, Hao Y J, et al. Enzymatic synthesis of esters in stirring-free Pickering emulsions[J]. China Surfactant Detergent & Cosmetics, 2018, 48(4): 210-215. | |
26 | Dong Z, Liu Z S, Shi J, et al. Carbon nanoparticle-stabilized Pickering emulsion as a sustainable and high-performance interfacial catalysis platform for enzymatic esterification/transesterification [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7619-7629. |
27 | Heyse A, Kraume M, Drews A. The impact of lipases on the rheological behavior of colloidal silica nanoparticle stabilized Pickering emulsions for biocatalytical applications[J]. Colloids and Surfaces B: Biointerfaces, 2020, 185(C): 110580. |
28 | 张明. Pickering乳滴固定床连续流动催化体系构建[D]. 太原: 山西大学, 2018. |
Zhang M. Construction of Pickering emulsion droplet fixed bed continuous flow catalytic system[D]. Taiyuan: Shanxi University, 2018. | |
29 | Wu C Z, Bai S, Ansorge-Schumacher M B, et al. Nanoparticle cages for enzyme catalysis in organic media[J]. Advanced Materials, 2011, 23(47): 5694-5699. |
30 | Chen H, Zou H B, Hao Y J, et al. Flow Pickering emulsion interfaces enhance catalysis efficiency and selectivity for cyclization of citronellal[J]. ChemSusChem, 2017, 10(9): 1989-1995. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[9] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[10] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[11] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[12] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[13] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[14] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[15] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||