化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3538-3550.DOI: 10.11949/0438-1157.20210270
郑龙1,3(),田佳鑫1,张泽鹏1,郭建3,朱晖3,谢慧翔3,何润泽3(),洪文晶1,2,3()
收稿日期:
2021-02-19
修回日期:
2021-05-28
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
何润泽,洪文晶
作者简介:
郑龙(1988—),男,硕士研究生,工程师,基金资助:
ZHENG Long1,3(),TIAN Jiaxin1,ZHANG Zepeng1,GUO Jian3,ZHU Hui3,XIE Huixiang3,HE Runze3(),HONG Wenjing1,2,3()
Received:
2021-02-19
Revised:
2021-05-28
Online:
2021-07-05
Published:
2021-07-05
Contact:
HE Runze,HONG Wenjing
摘要:
多肽是由氨基酸缩合连接而成的具有一定生物活性的化合物,在医药领域具有广阔的应用前景。多肽药物是现代医药研究的前沿方向,具有重要的社会价值和经济价值。综述了多肽生物合成法(天然原料提取法、酶解法、发酵法、基因重组法)和化学合成方法(液相合成法和固相合成法)的研究进展,重点综述化学合成法中的固相多肽合成工艺,介绍了反相高效液相色谱法、毛细管电泳法、离子交换色谱法、凝胶过滤色谱法、亲和层析法在多肽分离纯化中的应用情况,最后对多肽制药技术的未来发展进行展望。
中图分类号:
郑龙, 田佳鑫, 张泽鹏, 郭建, 朱晖, 谢慧翔, 何润泽, 洪文晶. 多肽药物制备工艺研究进展[J]. 化工学报, 2021, 72(7): 3538-3550.
ZHENG Long, TIAN Jiaxin, ZHANG Zepeng, GUO Jian, ZHU Hui, XIE Huixiang, HE Runze, HONG Wenjing. Progress on pharmaceutical engineering of peptide-based drugs[J]. CIESC Journal, 2021, 72(7): 3538-3550.
1 | Henninot A, Collins J C, Nuss J M. The current state of peptide drug discovery: back to the future?[J]. Journal of Medicinal Chemistry, 2018, 61(4): 1382-1414. |
2 | Strohmaier K, Franze R, Adam K H. Location and characterization of the antigenic portion of the FMDV immunizing protein[J]. The Journal of General Virology, 1982, 59(2): 295-306. |
3 | Camilio K A, Rekdal O, Sveinbjörnsson B. LTX-315 (Oncopore™): a short synthetic anticancer peptide and novel immunotherapeutic agent[J]. Oncoimmunology, 2014, 3: e29181. |
4 | Gan B H, Siriwardena T N, Javor S, et al. Fluorescence imaging of bacterial killing by antimicrobial peptide dendrimer G3KL[J]. ACS Infectious Diseases, 2019, 5(12): 2164-2173. |
5 | Nestor J J. The medicinal chemistry of peptides[J]. Current Medicinal Chemistry, 2009, 16(33): 4399-4418. |
6 | 胡玉玺, 蒋煜, 韩天娇. 制备工艺和过程控制对合成多肽药物有关物质的影响[J]. 中国新药杂志, 2017, 26(18): 2143-2148. |
Hu Y X, Jiang Y, Han T J. Effects of manufacturing process and process control on related substances of synthetic peptide drugs[J]. Chinese Journal of New Drugs, 2017, 26(18): 2143-2148. | |
7 | Stroet A, Linker R A, Gold R. Advancing therapeutic options in multiple sclerosis with neuroprotective properties[J]. Journal of Neural Transmission, 2013, 120 (1): 49-53. |
8 | Buse J B, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6)[J]. The Lancet, 2009, 374(9683): 39-47. |
9 | Mottet N, Peneau M, Mazeron J J, et al. Addition of radiotherapy to long-term androgen deprivation in locally advanced prostate cancer: an open randomised phase 3 trial[J]. European Urology, 2012, 62(2): 213-219. |
10 | Heyns C F, Simonin M P, Grosgurin P, et al. Comparative efficacy of triptorelin pamoate and leuprolide acetate in men with advanced prostate cancer[J]. BJU International, 2003, 92(3): 226-231. |
11 | Khosla S, Hofbauer L C. Osteoporosis treatment: recent developments and ongoing challenges[J]. The Lancet Diabetes & Endocrinology, 2017, 5(11): 898-907. |
12 | Mullady D K, Yadav D, Amann S T, et al. Type of pain, pain-associated complications, quality of life, disability and resource utilisation in chronic pancreatitis: a prospective cohort study[J]. Gut, 2011, 60(1): 77-84. |
13 | Marian M J, Abu Daya H, Chatterjee A, et al. Effects of crushed ticagrelor versus eptifibatide bolus plus clopidogrel in troponin-negative acute coronary syndrome patients undergoing percutaneous coronary intervention: a randomized clinical trial[J]. Journal of the American Heart Association, 2019, 8(23): e012844. |
14 | Fosgerau K, Hoffmann T. Peptide therapeutics:current status and future directions[J]. Drug Discovery Today, 2015, 20(1): 122-128. |
15 | Jaradat D M M. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation[J]. Amino Acids, 2018, 50(1): 39-68. |
16 | du Vigneaud V, Ressler C, Swan J M, et al. The synthesis of an octapeptide amide with hormonal activity of oxytocin[J]. Journal of the American Chemical Society, 1953, 75(19): 4879-4880. |
17 | 曲朋, 宋利, 赵好冬, 等. 多肽合成研究进展[J]. 中国现代中药, 2015, 17(3): 285-289, 295. |
Qu P, Song L, Zhao H D, et al. Research progress of peptide synthesis[J]. Modern Chinese Medicine, 2015, 17(3): 285-289, 295. | |
18 | Wang R C, Zhai S Y, Liang Y T, et al. Antibacterial effects of a polypeptide-enriched extract of Rana chensinensis via the regulation of energy metabolism[J]. Molecular Biology Reports, 2020, 47(6): 4477-4483. |
19 | Gasu E N, Ahor H S, Borquaye L S. Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity[J]. BioMed Research International, 2018, 2018: 6010572. |
20 | 张鸿鹏, 甘一如. 多肽液相分段合成及其进展[J]. 化学工业与工程, 2006, 23(3): 254-259. |
Zhang H P, Gan Y R. Progress in synthesis of peptide liquid-phase segments ligation[J]. Chemical Industry and Engineering, 2006, 23(3): 254-259. | |
21 | Wu Q Y, Du J J, Jia J Q, et al. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: hydrolysis kinetic, purification and molecular docking study[J]. Food Chemistry, 2016, 199: 140-149. |
22 | 王立晖, 袁永俊, 李娅奇. 生物活性多肽制备与纯化的研究进展[J]. 安徽农业科学, 2012, 40(14): 8021-8023. |
Wang L H, Yuan Y J, Li Y Q. Research advances in the preparation and purification of bioactive peptides[J]. Journal of Anhui Agricultural Sciences, 2012, 40(14): 8021-8023. | |
23 | Wang S Q, Liu F X, Wu J, et al. Study on optimization of extraction process and resistance to oxidation of polypeptide from sea cucumber waste liquid[J]. IOP Conference Series: Earth and Environmental Science, 2020, 559: 012025. |
24 | 尹乐斌, 周娟, 何平, 等. 乳酸菌发酵豆清液制备多肽及其体外抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(11): 131-137. |
Yin L B, Zhou J, He P, et al. Preparation of peptide from soybean processing waste water by lactic acid bacteria fermentation and its antioxidant activity in vitro[J]. Food and Fermentation Industries, 2020, 46(11): 131-137. | |
25 | Jemil I, Mora L, Nasri R, et al. A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6[J]. Food Research International, 2016, 89: 347-358. |
26 | 林静莲, 黄敏华, 王蒙, 等. 降糖多肽Brevinin-2GUb的高效表达及活性鉴定[J]. 现代食品科技, 2020, 36(5): 155-162. |
Lin J L, Huang M H, Wang M, et al. High expression and activity identification of the hypoglycemic peptide brevinin-2GUb[J]. Modern Food Science and Technology, 2020, 36(5): 155-162. | |
27 | Herbel V, Schäfer H, Wink M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity[J]. Molecules (Basel, Switzerland), 2015, 20(8): 14889-14901. |
28 | Verlander M. Industrial applications of solid-phase peptide synthesis — a status report[J]. International Journal of Peptide Research and Therapeutics, 2007, 13(1/2): 75-82. |
29 | Shimodaira S, Asano Y, Arai K, et al. Selenoglutathione diselenide: unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein[J]. Biochemistry, 2017, 56(42): 5644-5653. |
30 | 李士杰, 杨洋, 崔营营, 等. 微通道连续流动高效绿色合成亮丙瑞林[J]. 高等学校化学学报, 2020, 41(7): 1559-1566. |
Li S J, Yang Y, Cui Y Y, et al. High efficient and green approach to the synthesis of leuprolide in continuous-flow microreactor[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1559-1566. | |
31 | Merrifield R B. Solid phase peptide synthesis (Ⅰ): The synthesis of a tetrapeptide[J]. Journal of the American Chemical Society, 1963, 85(14): 2149-2154. |
32 | 黄蓓. 多肽固相合成研究进展[J].河南化工, 2013, 30(1): 28-30, 58. |
Huang B. Research progress of solid phase peptide synthesis[J]. Henan Chemical Industry, 2013, 30(1): 28-30, 58. | |
33 | Mäde V, Els-Heindl S, Beck-Sickinger A G. Automated solid-phase peptide synthesis to obtain therapeutic peptides[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 1197-1212. |
34 | Erak M, Bellmann-Sickert K, Els-Heindl S, et al. Peptide chemistry toolbox - transforming natural peptides into peptide therapeutics[J]. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2759-2765. |
35 | Stewart J M. Cleavage methods following Boc-based solid-phase peptide synthesis[J]. Methods in Enzymology, 1997, 289: 29-44. |
36 | Donovan A J, Dowle J, Yang Y W, et al. Total synthesis of bovine pancreatic trypsin inhibitor and the protein diastereomer [Gly37D-Ala]BPTI using Boc chemistry solid phase peptide synthesis[J]. Peptide Science, 2020, 112(4): e24166. |
37 | Fields G B, Noble R L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids[J]. International Journal of Peptide and Protein Research, 1990, 35(3): 161-214. |
38 | 代涛, 尹志峰, 赵红玲, 等. 布舍瑞林的合成[J]. 中国新药杂志, 2014, 23(15): 1806-1810. |
Dai T, Yin Z F, Zhao H L, et al. Synthesis of buserelin[J]. Chinese Journal of New Drugs, 2014, 23(15): 1806-1810. | |
39 | 瑙甘, 金钰龙, 黄嫣嫣, 等. 脑啡肽的固相合成与LC-MS/MS分离鉴定[J]. 分析测试学报, 2017, 36(2): 190-195. |
Nao G, Jin Y L, Huang Y Y, et al. Separation and characterization of solid phase synthesized enkephalins by LC-MS/MS[J]. Journal of Instrumental Analysis, 2017, 36(2): 190-195. | |
40 | Liang C, Behnam M A M, Sundermann T R, et al. Phenylglycine racemization in Fmoc-based solid-phase peptide synthesis: stereochemical stability is achieved by choice of reaction conditions[J]. Tetrahedron Letters, 2017, 58(24): 2325-2329. |
41 | Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis[J]. Journal of Peptide Science, 2016, 22(1): 4-27. |
42 | Kumar A, Jad Y E, Collins J M, et al. Microwave-assisted green solid-phase peptide synthesis using γ-valerolactone (GVL) as solvent[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 8034-8039. |
43 | Lawrenson S B, Arav R, North M. The greening of peptide synthesis[J]. Green Chemistry, 2017, 19(7): 1685-1691. |
44 | Manne S R, Torre B G D L, El-Faham A, et al. OxymaPure coupling reagents: beyond solid-phase peptide synthesis[J]. Synthesis, 2020, 52(21): 3189-3210. |
45 | El-Faham A, Al Marhoon Z, Abdel-Megeed A, et al. OxymaPure/DIC: an efficient reagent for the synthesis of a novel series of 4-[2-(2-acetylaminophenyl)-2-oxo-acetylamino] benzoyl amino acid ester derivatives[J]. Molecules (Basel, Switzerland), 2013, 18(12): 14747-14759. |
46 | 焦育强, 董雅芬, 李菲, 等. 盐类多肽缩合剂在有机合成中应用的研究进展[J]. 广州化工, 2014, 42(17): 27-29. |
Jiao Y Q, Dong Y F, Li F, et al. Research progress of onium-type coupling reagents in organic synthesis[J]. Guangzhou Chemical Industry, 2014, 42(17): 27-29. | |
47 | 朱俊, 黄臻辉, 朱建伟. 缩宫素生产工艺的工业化进展[J]. 中国医药工业杂志, 2018, 49(7): 910-916. |
Zhu J, Huang Z H, Zhu J W. Industrialization process of oxytocin production[J]. Chinese Journal of Pharmaceuticals, 2018, 49(7): 910-916. | |
48 | Moroder L, Musiol H J. Insulin—from its discovery to the industrial synthesis of modern insulin analogues[J]. Angewandte Chemie International Edition, 2017, 56(36): 10656-10669. |
49 | Ghribi A M, Sila A, Przybylski R, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate[J]. Journal of Functional Foods, 2015, 12: 516-525. |
50 | Girgih A T, Nwachukwu I D, Hasan F, et al. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats[J]. Food & Nutrition Research, 2015, 59(1): 29788. |
51 | Lamalle C, Servais A C, Demelenne A, et al. Analysis of protamine peptides in insulin pharmaceutical formulations by capillary electrophoresis[J]. Journal of Separation Science, 2016, 39(6): 1189-1194. |
52 | Mohanty D P, Mohapatra S, Misra S, et al. Milk derived bioactive peptides and their impact on human health—a review[J]. Saudi Journal of Biological Sciences, 2016, 23(5): 577-583. |
53 | 李诚, 肖岚, 付刚, 等. 猪皮胶原蛋白抗氧化肽的分离纯化及体外抗氧化活性研究[J]. 食品工业科技, 2014, 35(15): 95-100, 106. |
Li C, Xiao L, Fu G, et al. Study on separation and purification of antioxidant peptide from pigskin collagen protein and antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2014, 35(15): 95-100, 106. | |
54 | Yu J, Hu Y, Xue M, et al. Purification and identification of antioxidant peptides from enzymatic hydrolysate of spirulina platensis[J]. Journal of Microbiology and Biotechnology, 2016, 26(7): 1216-1223. |
55 | Winzor D J. From gel filtration to biosensor technology: the development of chromatography for the characterization of protein interactions[J]. Journal of Molecular Recognition, 2000, 13(5): 279-298. |
56 | Burkova E E, Dmitrenok P S, Bulgakov D V, et al. Exosomes from human placenta purified by affinity chromatography on sepharose bearing immobilized antibodies against CD81 tetraspanin contain many peptides and small proteins[J]. IUBMB Life, 2018, 70(11): 1144-1155. |
57 | Frolov A, Hoffmann R. Analysis of amadori peptides enriched by boronic acid affinity chromatography[J]. Annals of the New York Academy of Sciences, 2008, 1126(1): 253-256. |
58 | Mant C T, Hodges R S. Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) of peptides and proteins[J]. Journal of Separation Science, 2008, 31(15): 2754-2773. |
59 | Aumann L, Stroehlein G, Morbidelli M. Parametric study of a 6-column countercurrent solvent gradient purification (MCSGP) unit[J]. Biotechnology and Bioengineering, 2007, 98(5): 1029-1042. |
60 | 胡玉玺, 蒋煜, 韩天娇, 等. 合成多肽药物质控及杂质谱研究[J]. 中国新药杂志, 2018, 27(5): 502-508. |
Hu Y X, Jiang Y, Han T J, et al. Quality control and related substances of synthetic peptide drugs[J]. Chinese Journal of New Drugs, 2018, 27(5): 502-508. | |
61 | Chang S C, Wang L R, Armstrong D W. Facile resolution of N-tert-butoxy-carbonyl amino acids: the importance of enantiomeric purity in peptide synthesis[J]. Journal of Liquid Chromatography, 1992, 15(9): 1411-1429. |
62 | Hooshfar S, Mortazavi S A, Ghassemi S, et al. The application of peptide sequencing for characterization of cetrorelix and its related impurities[J]. World Journal of Pharmaceutical Sciences, 2016, 4(8): 107-115. |
63 | D'Hondt M, Bracke N, Taevernier L, et al. Related impurities in peptide medicines[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 101: 2-30. |
64 | 陈震. 有关物质的研究与新药注册[J]. 中国医药工业杂志, 2010, 41(11): 872-876. |
Chen Z. Study on related substances and new drug application[J]. Chinese Journal of Pharmaceuticals, 2010, 41(11): 872-876. | |
65 | Pennington M W. Improving crude product quality for complex synthetic peptides[J]. Chimica Oggi, 2019, 37(2): 34. |
66 | Staby A, Steensgaard D B, Haselmann K F, et al. Influence of production process and scale on quality of polypeptide drugs: a case study on GLP-1 analogs[J]. Pharmaceutical Research, 2020, 37(7): 1-18. |
67 | Varnava K G, Sarojini V. Making solid-phase peptide synthesis greener: a review of the literature[J]. Chemistry – an Asian Journal, 2019, 14(8): 1088-1097. |
68 | Martin V, Egelund P H G, Johansson H, et al. Greening the synthesis of peptide therapeutics: an industrial perspective[J]. RSC Advances, 2020, 10(69): 42457-42492. |
69 | Naganna N, Madhavan N. Soluble non-cross-linked poly(norbornene) supports for peptide synthesis with minimal reagents[J]. The Journal of Organic Chemistry, 2014, 79(23): 11549-11557. |
70 | Raz R, Burlina F, Ismail M, et al. HF-free boc synthesis of peptide thioesters for ligation and cyclization[J]. Angewandte Chemie International Edition, 2016, 55(42): 13174-13179. |
71 | Jad Y E, Govender T, Kruger H G, et al. Green solid-phase peptide synthesis (GSPPS)(3): Green solvents for fmoc removal in peptide chemistry[J]. Organic Process Research & Development, 2017, 21(3): 365-369. |
72 | Přibylka A, Krchňák V, Schütznerová E. Environmentally friendly SPPS II: scope of green fmoc removal protocol using NaOH and its application for synthesis of commercial drug triptorelin[J]. The Journal of Organic Chemistry, 2020, 85(14): 8798-8811. |
73 | Okada Y, Takasawa R, Kubo D, et al. Improved tag-assisted liquid-phase peptide synthesis: application to the synthesis of the bradykinin receptor-antagonist icatibant acetate[J]. Organic Process Research & Development, 2019, 23(11): 2576-2581. |
74 | Fuse S, Otake Y, Nakamura H. Peptide synthesis utilizing micro-flow technology[J]. Chemistry - an Asian Journal, 2018, 13(24): 3818-3832. |
75 | Wang W Z, Huang Y Y, Liu J Z, et al. Integrated SPPS on continuous-flow radial microfluidic chip[J]. Lab on a Chip, 2011, 11(5): 929-935. |
76 | Qiang L, Guo J, Han Y, et al. A novel anti Candida albicans drug screening system based on high-throughput microfluidic chips[J]. Scientific Reports, 2019, 9(1): 8087. |
77 | Tietze A A, Heimer P, Stark A, et al. Ionic liquid applications in peptide chemistry: synthesis, purification and analytical characterization processes[J]. Molecules, 2012, 17(4): 4158-4185. |
78 | So S, Peeva L G, Tate E W, et al. Membrane enhanced peptide synthesis[J]. Chemical Communications (Cambridge, England), 2010, 46(16): 2808-2810. |
79 | So S, Peeva L G, Tate E W, et al. Organic solvent nanofiltration: a new paradigm in peptide synthesis[J]. Organic Process Research & Development, 2010, 14(6): 1313-1325. |
80 | Castro V, Noti C, Chen W Q, et al. Novel globular polymeric supports for membrane-enhanced peptide synthesis[J]. Macromolecules, 2017, 50(4): 1626-1634. |
81 | Tang Y C, Thillier Y, Liu R W, et al. Single-bead quantification of peptide loading distribution for one-bead one-compound library synthesis using confocal raman spectroscopy[J]. Analytical Chemistry, 2017, 89(13): 7000-7008. |
82 | Knauer S, Koch N, Uth C, et al. Sustainable peptide synthesis enabled by a transient protecting group[J]. Angewandte Chemie International Edition, 2020, 59(31): 12984-12990. |
83 | Sletten E T, Nuño M, Guthrie D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor[J]. Chemical Communications, 2019, 55(97): 14598-14601. |
84 | Mijalis A J, Thomas D A, Simon M D, et al. A fully automated flow-based approach for accelerated peptide synthesis[J]. Nature Chemical Biology, 2017, 13(5): 464-466. |
85 | Thakkar A, Johansson S, Jorner K, et al. Artificial intelligence and automation in computer aided synthesis planning[J]. Reaction Chemistry & Engineering, 2021, 6(1): 27-51. |
86 | Wang Z, Zhao W, Hao G F, et al. Automated synthesis: current platforms and further needs[J]. Drug Discovery Today, 2020, 25(11): 2006-2011. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[4] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[5] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[6] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[9] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[10] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[11] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[12] | 宇国佳, 靳冬玉, 周智勇, 张帆, 任钟旗. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
[13] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[14] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[15] | 张秋华, 刘曼路, 王峥, 张一鸣, 苏海佳. 维生素K2的生物合成及其甲萘醌基团合成酶的功能分析[J]. 化工学报, 2023, 74(1): 342-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||