化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 437-444.DOI: 10.11949/0438-1157.20201553
收稿日期:
2020-11-02
修回日期:
2021-01-19
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
梁颖宗
作者简介:
徐健玮(1997—),男,硕士研究生,基金资助:
XU Jianwei(),LIANG Yingzong(
),LUO Xianglong,CHEN Jianyong,YANG Zhi,CHEN Ying
Received:
2020-11-02
Revised:
2021-01-19
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIANG Yingzong
摘要:
提出了一种PRICO天然气液化-膜蒸馏(MD)海水淡化系统集成方法,利用PRICO过程压缩机出口的余热驱动MD海水淡化。采用Aspen Plus和GAMS建立了集成系统的数学模型,综合考虑系统的结构、物流物性、设备规模、操作参数等系统设计问题,分析不同设计下系统的投资、能耗、运行费用以及MD单位产水成本。模型应用于一个处理量为1 kmol/s的PRICO天然气液化系统与MD集成的案例研究。计算结果表明,单位产水成本最小时,系统产水成本为1.98 USD/m3,淡水产量为5.78 m3/h,与反渗透等海水淡化技术相比,MD在经济性方面具有较强的竞争力。
中图分类号:
徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
XU Jianwei, LIANG Yingzong, LUO Xianglong, CHEN Jianyong, YANG Zhi, CHEN Ying. Integration and analysis of PRICO-membrane distillation seawater desalination system[J]. CIESC Journal, 2021, 72(S1): 437-444.
设计参数 | 数值 |
---|---|
天然气处理量 | 1 kmol/s |
天然气压力 | 5.5 MPa |
气态天然气温度 | 25℃ |
液化天然气温度 | -155℃ |
制冷剂流量 | 2.4 kmol/s |
冷凝器出口温度 | 25℃ |
节流阀入口温度 | -155℃ |
节流阀出口温度 | -167℃ |
冷海水温度 | 20℃ |
淡水产品温度 | 25℃ |
热海水温度 | 70℃ |
冷淡水温度 | 30℃ |
膜热侧流速 | 2 m/s |
膜冷侧流速 | 2 m/s |
最小换热温差 | 5℃ |
表1 系统主要设计参数
Table 1 Main design parameters of system
设计参数 | 数值 |
---|---|
天然气处理量 | 1 kmol/s |
天然气压力 | 5.5 MPa |
气态天然气温度 | 25℃ |
液化天然气温度 | -155℃ |
制冷剂流量 | 2.4 kmol/s |
冷凝器出口温度 | 25℃ |
节流阀入口温度 | -155℃ |
节流阀出口温度 | -167℃ |
冷海水温度 | 20℃ |
淡水产品温度 | 25℃ |
热海水温度 | 70℃ |
冷淡水温度 | 30℃ |
膜热侧流速 | 2 m/s |
膜冷侧流速 | 2 m/s |
最小换热温差 | 5℃ |
物质 | 摩尔分数 | ||||
---|---|---|---|---|---|
N2 | CH4 | C2H4 | C3H8 | C4H10-1 | |
天然气 | 2.8% | 89.8% | 5.5% | 1.88% | 0.1% |
混合制冷剂 | 12.53% | 19.09% | 32.96% | — | 35.42% |
表2 天然气及混合制冷剂组分
Table 2 Natural gas and mixed refrigerant components
物质 | 摩尔分数 | ||||
---|---|---|---|---|---|
N2 | CH4 | C2H4 | C3H8 | C4H10-1 | |
天然气 | 2.8% | 89.8% | 5.5% | 1.88% | 0.1% |
混合制冷剂 | 12.53% | 19.09% | 32.96% | — | 35.42% |
项目 | 数值 |
---|---|
电价Pe/(USD/(kW·h)) | 0.13 |
清洁周期Tcl/d | 5 |
清洁费用Ccl/( USD /次) | 1.17 |
保养费Cm/( USD /a) | 0.025(chx+cpump) |
保险费Ci/( USD /a) | 0.01cca |
表3 MD流程主要部件运行成本及参数[24]
Table 3 Operation costs and parameters of main parts of MD process[24]
项目 | 数值 |
---|---|
电价Pe/(USD/(kW·h)) | 0.13 |
清洁周期Tcl/d | 5 |
清洁费用Ccl/( USD /次) | 1.17 |
保养费Cm/( USD /a) | 0.025(chx+cpump) |
保险费Ci/( USD /a) | 0.01cca |
设计变量 | 数值 | 设计变量 | 数值 |
---|---|---|---|
膜蒸馏效率 | 58.60% | 产水量 | 5.78 m3/h |
冷凝器换热面积 | 274.83 m2 | 压缩机功耗 | 20.89 MW |
冷却器换热面积 | 217.98 m2 | 余热量 | 35.01 MW |
膜面积 | 159.86 m2 | 冷凝器对数平均温差 | 25.48℃ |
水泵总功率 | 33.70 kW | 压缩机出口压力 | 1.5 MPa |
膜蒸馏热侧海水流量 | 152.07 kg/s | 节流阀出口压力 | 0.168 MPa |
膜蒸馏冷侧淡水流量 | 154.30 kg/s | 产水成本 | 1.98 USD /m3 |
表4 系统设计变量
Table 4 System design variables
设计变量 | 数值 | 设计变量 | 数值 |
---|---|---|---|
膜蒸馏效率 | 58.60% | 产水量 | 5.78 m3/h |
冷凝器换热面积 | 274.83 m2 | 压缩机功耗 | 20.89 MW |
冷却器换热面积 | 217.98 m2 | 余热量 | 35.01 MW |
膜面积 | 159.86 m2 | 冷凝器对数平均温差 | 25.48℃ |
水泵总功率 | 33.70 kW | 压缩机出口压力 | 1.5 MPa |
膜蒸馏热侧海水流量 | 152.07 kg/s | 节流阀出口压力 | 0.168 MPa |
膜蒸馏冷侧淡水流量 | 154.30 kg/s | 产水成本 | 1.98 USD /m3 |
项目 | 投资费用/ USD | 项目 | 投资费用/ (USD/a) |
---|---|---|---|
膜蒸馏模块 | 63944 | 保险费 | 2226 |
冷凝器 | 99145 | 清洁费 | 705 |
冷却器 | 93258 | 保养费 | 9248 |
水泵 | 187610 | 膜蒸馏部分电费 | 35048 |
表5 系统的各部分投资费用
Table 5 Investment costs of each part of system
项目 | 投资费用/ USD | 项目 | 投资费用/ (USD/a) |
---|---|---|---|
膜蒸馏模块 | 63944 | 保险费 | 2226 |
冷凝器 | 99145 | 清洁费 | 705 |
冷却器 | 93258 | 保养费 | 9248 |
水泵 | 187610 | 膜蒸馏部分电费 | 35048 |
水处理技术 | 产水成本/( USD /m3) |
---|---|
多效蒸馏 | 0.7~3.5 |
多级闪蒸 | 0.9~4.0 |
压气蒸馏 | 1.0~3.5 |
反渗透 | 0.5~3.0 |
二次反渗透 | 0.2~1.8 |
PRICO-膜蒸馏 | 1.98 |
表6 PRICO-膜蒸馏海水淡化与现有技术的产水成本对比[29-30]
Table 6 Comparison of water production cost of PRICO-MD seawater desalination with existing technology[29-30]
水处理技术 | 产水成本/( USD /m3) |
---|---|
多效蒸馏 | 0.7~3.5 |
多级闪蒸 | 0.9~4.0 |
压气蒸馏 | 1.0~3.5 |
反渗透 | 0.5~3.0 |
二次反渗透 | 0.2~1.8 |
PRICO-膜蒸馏 | 1.98 |
1 | BP. BP Energy Outlook 2017 [EB/OL]. [2020-8-1]. . |
2 | BP. BP Energy Outlook 2016 [EB/OL]. [2020-8-1]. . |
3 | He T B, Karimi I A, Ju Y L. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications [J]. Chemical Engineering Research and Design, 2018, 132: 89-114. |
4 | Xu X W, Liu J P, Jiang C S, et al. The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process [J]. Applied Energy, 2013, 102: 1127-1136. |
5 | Aslambakhsh A H, Moosavian M A, Amidpour M, et al. Global cost optimization of a mini-scale liquefied natural gas plant [J]. Energy, 2018, 148: 1191-1200. |
6 | Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review [J]. Desalination, 2012, 287: 2-18. |
7 | Ullah R, Khraisheh M, Esteves R J, et al. Energy efficiency of direct contact membrane distillation [J]. Desalination, 2018, 433: 56-67. |
8 | Morosuk T, Tesch S, Hiemann A, et al. Evaluation of the PRICO liquefaction process using exergy-based methods [J]. Journal of Natural Gas Science and Engineering, 2015, 27: 23-31. |
9 | Eykens L, De Sitter K, Dotremont C, et al. How to optimize the membrane properties for membrane distillation: a review [J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333-9343. |
10 | Zhang J R, Meerman H, Benders R, et al. Comprehensive review of current natural gas liquefaction processes on technical and economic performance [J]. Applied Thermal Engineering, 2020, 166: 114736. |
11 | Price B C, Mortko R A. PRICO—a simple, flexible proven approach to natural gas liquefaction [J]. Gastech, 1996, 96: 3-6. |
12 | Jensen J B, Skogestad S. Optimal operation of a simple LNG process [J]. IFAC Proceedings Volumes, 2006, 39(2): 241-246. |
13 | Kamath R S, Biegler L T, Grossmann I E. Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration [J]. AIChE Journal, 2012, 58(1): 190-204. |
14 | Millero F J, Poisson A. International one-atmosphere equation of state of seawater [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(6): 625-629. |
15 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 563. |
Yang S M, Tao W Q. Heat Transfer [M]. 4th ed. Beijing: Higher Education Press, 2006: 563. | |
16 | Sharqawy M H, Lienhard J H, Zubair S M. Thermophysical properties of seawater: a review of existing correlations and data [J]. Desalination and Water Treatment, 2010, 16(1/2/3): 354-380. |
17 | Sharqawy M H. New correlations for seawater and pure water thermal conductivity at different temperatures and salinities [J]. Desalination, 2013, 313: 97-104. |
18 | Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges [J]. Energy & Environmental Science, 2018, 11(5): 1177-1196. |
19 | Qtaishat M, Matsuura T, Kruczek B, et al. Heat and mass transfer analysis in direct contact membrane distillation [J]. Desalination, 2008, 219(1/2/3): 272-292. |
20 | 陈新志, 蔡振云, 钱超, 等. 化工热力学[M]. 4版, 北京: 化学工业出版社, 2019: 213-214. |
Chen X Z, Cai Z Y, Qian C, et al. Chemical Engineering Thermodynamics [M]. 4th ed. Beijing: Chemical Industry Press, 2019: 213-214. | |
21 | Hitsov I, Maere T, De Sitter K, et al. Modelling approaches in membrane distillation: a critical review [J]. Separation and Purification Technology, 2015, 142: 48-64. |
22 | 王鹏, 杨茉, 王治云, 等. 各种截面形状通道内对流换热的比较与修正的计算公式[C]//中国工程热物理学会传热传质学术年会. 2012. |
Wang P, Yang M, Wang Z Y,et al. Comparison of convective heat transfer in various cross section shape channels and modified calculation formula [C]// Annual Conference of Chinese Society of Engineering Thermophysics on Heat and Mass Transfer. 2012. | |
23 | Bahmanyar A, Asghari M, Khoobi N. Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation [J]. Chemical Engineering and Processing: Process Intensification, 2012, 61: 42-50. |
24 | Hitsov I, Sitter K D, Dotremont C, et al. Economic modelling and model-based process optimization of membrane distillation [J]. Desalination, 2018, 436: 125-143. |
25 | Elsayed N A, Barrufet M A, El-Halwagi M M. Integration of thermal membrane distillation networks with processing facilities [J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5284-5298. |
26 | Peters M S. Plant Design and Economics for Chemical Engineers [M]. McGraw-Hill, 1958. |
27 | Caputo A C, Pelagagge P M, Salini P. Manufacturing cost model for heat exchangers optimization [J]. Applied Thermal Engineering, 2016, 94: 513-533. |
28 | Phattaranawik J, Jiraratananon R, Fane A G. Heat transport and membrane distillation coefficients in direct contact membrane distillation [J]. Journal of Membrane Science, 2003, 212(1/2): 177-193. |
29 | 王云山. 膜蒸馏海水淡化特性分析及其与吸收式制冷机复合系统的研究[D]. 济南: 山东大学, 2019. |
Wang Y S. MD desalination characteristics analysis and study of its combination system with absorption chiller [D]. Jinan: Shandong University, 2019. | |
30 | Voutchkov N. Desalination Project Cost Estimating and Management [M]. CRC Press, 2018. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[5] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[8] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[9] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[10] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[11] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[12] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[13] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[14] | 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325. |
[15] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||