化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 560-566.doi: 10.11949/0438-1157.20201525

• 材料化学工程与纳米技术 • 上一篇    

脂肪类复合相变储能材料中脂肪酸最佳质量含量的确定方法

周东一1,2,3(),肖湘华1,肖飚1,3,刘益才2()   

  1. 1.邵阳学院机械与能源工程学院,湖南 邵阳 422000
    2.中南大学能源科学与工程学院,湖南 长沙 410083
    3.湖南省高效动力系统与智能制造重点实验室,湖南 邵阳 422000
  • 收稿日期:2020-10-30 修回日期:2021-01-22 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 刘益才 E-mail:zhoudongyi2005@163.com;1yc0301@163.com
  • 作者简介:周东一(1974—),男,硕士,教授,zhoudongyi2005@163.com
  • 基金资助:
    湖南省重点研发计划项目(2018GK2074);湖南省自然科学基金项目(2018JJ2366);湖南省高校创新平台开放基金项目(18K097);国家自然科学基金项目(51776226)

Method of determining optimum mass ratio of fatty acids in composite phase change materials for thermal energy storage

ZHOU Dongyi1,2,3(),XIAO Xianghua1,XIAO Biao1,3,LIU Yicai2()   

  1. 1.School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, Hunan, China
    2.School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
    3.Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang 422000, Hunan, China
  • Received:2020-10-30 Revised:2021-01-22 Published:2021-06-20 Online:2021-06-20
  • Contact: LIU Yicai E-mail:zhoudongyi2005@163.com;1yc0301@163.com

摘要:

为确定脂肪类复合相变储能材料中脂肪酸最佳质量含量,比较了目测逼近法、称重测量法和渗透直径百分比判定法3种方法,并以确定癸酸-肉豆蔻酸/膨胀石墨(CA-MA/EG)复合相变材料中癸酸-肉豆蔻酸的最佳质量含量为例,阐述了3种方法的使用及其特点。结果表明:目测逼近法操作简单,主要依靠经验与主观判断;渗透质量百分比判定法操作略显复杂,但科学严谨、结果精确;渗透直径百分比判定法可根据实际情况灵活设置判定标准,判定结果能准确反映复合相变材料的稳定性。

关键词: 脂肪酸, 复合材料, 制备, 最佳质量含量, 显微结构

Abstract:

In order to obtain a satisfactory gating property of the membrane, the grafting yield must be kept in a proper range. In order to determine the optimal mass ratio of fatty acids in fatty acids composite phase change energy storage materials, three methods were proposed, the visual approaching method, the weighing measurement method and the percentage determination of penetration diameter method. And taking capric-myristic acid/expanded graphite (CA-MA/EG) composite phase change material for example, the optimum mass ratio of CA-MA in CA-MA/EG was determined by three methods. The results showed that the visual approximation method is easy to operate and mainly depends on experience and subjective judgment; the weighing measurement method is precise, but it is more complex; the determination standard can be set flexibly on the basis of the facts, and the results can accurately reflect the stability of composite phase change materials by the percentage determination of penetration diameter method.

Key words: fatty acids, composites, preparation, the optimal mass ratio, microstructure

中图分类号: 

  • TK 02

图1

第1组CA-MA/EG复合相变材料热处理前后的图片"

图2

第2组CA-MA/EG复合相变材料热处理前后的图片"

表1

CA-MA/EG复合相变材料失重情况"

CA-MA质量含量/%热处理前质量/g热处理后质量/g渗透百分比/%
900.50.4980.5
910.50.4980.5
920.50.4980.5
92.20.50.4980.5
92.40.50.4951.0
92.60.50.4931.4
92.80.50.4882.5
930.50.4745.2
940.50.41816.5
950.50.35728.6

图3

渗透直径判定法示意1—滤纸;2—复合材料测试区域;3—相变材料渗出圈"

表2

渗出稳定性评价标准"

渗出情况渗出百分比稳定性
不渗出Φ≤0非常稳定
渗出极少(可视为不渗出)0<Φ≤5%稳定
微量渗出5%<Φ≤15%基本稳定
少量渗出15%<Φ≤30%基本不稳定
中量渗出30%<Φ≤50%不稳定
大量渗出Φ>50%非常不稳定

表3

CA-MA/EG复合相变材料渗出稳定性判断"

MA质量含量/%渗出圈平均直径/mm渗出百分比Φ/%判断标准判断结果
90Φ≤0非常稳定
91Φ≤0非常稳定
92Φ≤0非常稳定
92.2Φ≤0非常稳定
92.4Φ≤0非常稳定
92.631.24.00<Φ≤5%稳定
92.832.58.35%<Φ≤15%基本稳定
9336.220.615%<Φ≤30%基本不稳定
9442.341.030%<Φ≤50%不稳定
9576.8156.0Φ>50%非常不稳定

图4

EG和CA-MA/EG的SEM图"

1 Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323.
2 Zhou Z H, Liu J W, Wang C D, et al. Research on the application of phase-change heat storage in centralized solar hot water system [J]. Journal of Cleaner Production, 2018, 198: 1262-1275.
3 Souayfane F, Fardoun F, Biwole P H. Phase change materials (PCM) for cooling applications in buildings: a review [J]. Energy and Buildings, 2016, 129: 396-431.
4 Pereira da Cunha J, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials — a review [J]. Applied Energy, 2016, 177: 227-238.
5 Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application [J]. International Journal of Refrigeration, 2012, 35(8): 2053-2077.
6 章学来, 徐笑锋, 周孙希, 等. 蓄冷技术在冷链物流中的研究进展[J]. 制冷与空调, 2017, 17(12): 88-92.
Zhang X L, Xu X F, Zhou S X, et al. Research progress of cold storage technology in cold chain logistics [J]. Refrigeration and Air-Conditioning, 2017, 17(12): 88-92.
7 傅一波, 王冬梅, 朱宏. 低温相变储能材料研究进展及其应用[J]. 材料导报, 2016, 30(S2): 222-226.
Fu Y B, Wang D M, Zhu H. Review on low temperature phase change materials and its application [J]. Materials Review, 2016, 30(S2): 222-226.
8 Kenisarin M M. Thermophysical properties of some organic phase change materials for latent heat storage. a review [J]. Solar Energy, 2014, 107: 553-575.
9 Xu X X, Cui H Z, Memon S A, et al. Development of novel composite PCM for thermal energy storage using CaCl2·6H2O with graphene oxide and SrCl2·6H2O [J]. Energy and Buildings, 2017, 156: 163-172.
10 Zhang P, Xiao X, Ma Z W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement [J]. Applied Energy, 2016, 165: 472-510.
11 Şahan N, Paksoy H. Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change material composite for thermal energy storage [J]. Composites Part B: Engineering, 2017, 126: 88-93.
12 Kahwaji S, White M A. Prediction of the properties of eutectic fatty acid phase change materials [J]. Thermochimica Acta, 2018, 660: 94-100.
13 Yuan Y P, Zhang N, Tao W Q, et al. Fatty acids as phase change materials: a review [J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482-498.
14 Yuan Y P, Tao W Q, Cao X L, et al. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture [J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2889-2891.
15 Wen R L, Zhang X G, Huang Z H, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2018, 178: 273-279.
16 Zhou D Y, Zhou Y H, Liu Y C, et al. Preparation and performance of capric-myristic acid binary eutectic mixtures for latent heat thermal energy storages [J]. Journal of Nanomaterials, 2019, 2019: 1-9.
17 Li M, Kao H T, Wu Z S, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials [J]. Applied Energy, 2011, 88(5): 1606-1612.
18 Fan L W, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24-46.
19 Wu S F, Yan T, Kuai Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review [J]. Energy Storage Materials, 2020, 25: 251-295.
20 Xu T, Chen Q L, Huang G S, et al. Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material [J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146.
21 Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model [J]. Energy Conversion and Management, 2015, 102: 202-208.
22 Zhou D Y, Zhou Y H, Yuan J W, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage [J]. Journal of Nanomaterials, 2020, 2020: 1-9.
23 Jamekhorshid A, Sadrameli S M, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium [J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542.
24 Zhou D Y, Yuan J W, Zhou Y H, et al. Preparation and properties of capric-myristic acid/expanded graphite composite phase change materials for latent heat thermal energy storage [J]. Energies, 2020, 13(10): 2462.
25 Zhang N, Yuan Y P, Wang X, et al. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage [J]. Chemical Engineering Journal, 2013, 231: 214-219.
26 Zhang H, Gao X N, Chen C X, et al. A capric-palmitic-stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage [J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 138-145.
27 曹晓玲, 袁艳平, 汪玺, 等. 肉豆蔻酸/膨胀石墨复合相变材料的制备及性能研究[J]. 太阳能学报, 2014, 35(8): 1493-1498.
Cao X L, Yuan Y P, Wang X, et al. Preparation and thermal property of myristic acid/expanded graphite composite as phase change material [J]. Acta Energiae Solaris Sinica, 2014, 35(8): 1493-1498.
28 Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage [J]. Solar Energy, 2014, 99: 259-266.
29 孙建忠, 吴子钊. 建材用相变工质材料渗出程度评价方法的研究[J]. 新型建筑材料, 2004, 31(7): 43-46.
Sun J Z, Wu Z Z. Study on evaluation method of exudation of phase transition working substance for building materials [J]. New Building Materials, 2004, 31(7): 43-46.
30 Zhou D Y, Yuan J W, Zhou Y H, et al. Preparation and characterization of myristic acid/expanded graphite composite phase change materials for thermal energy storage [J]. Scientific Reports, 2020, 10: 10889.
[1] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[2] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[3] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[4] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[5] 张家仁, 刘海超. 大豆油与甲醇酯交换反应体系的相平衡研究[J]. 化工学报, 2022, 73(5): 1920-1929.
[6] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[7] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[8] 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
[9] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[10] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[11] 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
[12] 梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20.
[13] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[14] 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
[15] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!