化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 7-20.DOI: 10.11949/0438-1157.20201494
收稿日期:
2020-10-28
修回日期:
2021-01-12
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
刘益才
作者简介:
梁恒(1996—),男,硕士研究生,基金资助:
LIANG Heng(),LIU Yicai(),WANG Qianxu,ZHAO Xiangle,LI Zheng
Received:
2020-10-28
Revised:
2021-01-12
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIU Yicai
摘要:
有效热导率是开孔泡沫金属复合材料热传输热性的重要参数,基于三维结构的复杂性,从边界模型和晶胞分析模型两个方面出发,较为全面地概述了有效热导率的研究现状。指出边界模型以均质化方法宏观分析热传导问题而忽略了微观孔结构的影响,重点阐述晶胞分析模型中立方体模型和开尔文模型的经验相关性分析方法,指出其关键点在于以孔隙率形式将多孔结构形状参数拟合成可调参数表达式。此外,3D断层扫描与数值模拟相结合,阐述lattice-Boltzmann方法对开孔泡沫结构的研究,突出真实孔结构对有效热导率的影响和规律。展望后期研究重点是经验相关模型的精确拟合方式及特征关联式的统一化,高精度数值模拟计算中的简化对比分析模型。
中图分类号:
梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20.
LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites[J]. CIESC Journal, 2021, 72(S1): 7-20.
1 | Tauseef-ur-rehman, Ali H M, Janjua M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams [J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
2 | Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system [J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
3 | 林瑞泰. 多孔介质传热传质引论[M]. 北京: 科学出版社, 1995. |
Lin R T. Introduction to Heat and Mass Transfer in Porous Media [M]. Beijing: Science Press, 1995. | |
4 | Mendes M A A, Skibina V, Talukdar P, et al. Experimental validation of simplified conduction-radiation models for evaluation of effective thermal conductivity of open-cell metal foams at high temperatures [J]. International Journal of Heat and Mass Transfer, 2014, 78: 112-120. |
5 | Landauer R. The electrical resistance of binary metallic mixtures [J]. Journal of Applied Physics, 1952, 23(7): 779-784. |
6 | Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials [J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. |
7 | Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams [J]. Journal of Heat Transfer, 1999, 121(2): 466-471. |
8 | Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams [J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. |
9 | Ackermann S, Scheffe J R, Duss J, et al. Morphological characterization and effective thermal conductivity of dual-scale reticulated porous structures [J]. Materials, 2014, 7(11): 7173-7195. |
10 | Jagjiwanram, Singh R. Effective thermal conductivity of highly porous two-phase systems [J]. Applied Thermal Engineering, 2004, 24(17/18): 2727-2735. |
11 | Chaudhary D R, Bhandari R C. Heat transfer through dispersed medium [J]. Pure and Applied Physics, 1968, 6: 135. |
12 | Singh R, Kasana H S. Computational aspects of effective thermal conductivity of highly porous metal foams [J]. Applied Thermal Engineering, 2004, 24(13): 1841-1849. |
13 | Kumar P, Topin F. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams [J]. Heat and Mass Transfer, 2017, 53(8): 2473-2486. |
14 | Paek J W, Kang B H, Kim S Y, et al. Effective thermal conductivity and permeability of aluminum foam materials [J]. International Journal of Thermophysics, 2000, 21(2): 453-464. |
15 | 吕兆华. 泡沫型多孔介质等效导热系数的计算[J]. 南京理工大学学报(自然科学版), 2001, 25(3): 257-261. |
Lü Z H. Calculation of effective thermal conductivity of foam porous media [J]. Journal of Nanjing University of Science and Technology, 2001, 25(3): 257-261. | |
16 | 徐伟强, 袁修干, 李贞. 泡沫金属基复合相变材料的有效导热系数研究[J]. 功能材料, 2009, 40(8): 1329-1332, 1337. |
Xu W Q, Yuan X G, Li Z. Study on effective thermal conductivity of metal foam matrix composite phase change materials [J]. Journal of Functional Materials, 2009, 40(8): 1329-1332, 1337. | |
17 | Edouard D. The effective thermal conductivity for “slim” and “fat” foams [J]. AIChE Journal, 2011, 57(6): 1646-1651. |
18 | Corasaniti S, De Luca E, Gori F. Effect of structure, porosity, saturating fluid and solid material on the effective thermal conductivity of open-cells foams [J]. International Journal of Heat and Mass Transfer, 2019, 138: 41-48. |
19 | 习常清, 李志强, 敬霖, 等. 开孔泡沫金属热传导性能的理论研究与数值模拟[J]. 稀有金属材料与工程, 2014, 43(3): 686-691. |
Xi C Q, Li Z Q, Jing L, et al. Theoretical study and numerical simulation of effective thermal conductivities of open-cell metallic foam [J]. Rare Metal Materials and Engineering, 2014, 43(3): 686-691. | |
20 | Zenner A, Edouard D. Revised cubic model for theoretical estimation of effective thermal conductivity of metal foams [J]. Applied Thermal Engineering, 2017, 113: 1313-1318. |
21 | 肖鑫. 多孔基相变蓄能材料的热质传递现象和机理研究[D]. 上海: 上海交通大学, 2015. |
Xiao X. Investigation on heat and mass transfer characteristics of composite phase change materials with porous media [D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
22 | Huu T T, Lacroix M, Pham Huu C, et al. Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry [J]. Chemical Engineering Science, 2009, 64(24): 5131-5142. |
23 | Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam [J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836. |
24 | Dai Z, Nawaz K, Park Y G, et al. Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams [J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 575-580. |
25 | Yang H, Zhao M, Gu Z L, et al. A further discussion on the effective thermal conductivity of metal foam: an improved model [J]. International Journal of Heat and Mass Transfer, 2015, 86: 207-211. |
26 | Yang H Z, Li Y Y, Yang Y, et al. Effective thermal conductivity of high porosity open-cell metal foams [J]. International Journal of Heat and Mass Transfer, 2020, 147: 118974. |
27 | Chan K C, Tso C Y, Hussain A, et al. A theoretical model for the effective thermal conductivity of graphene coated metal foams [J]. Applied Thermal Engineering, 2019, 161: 114112. |
28 | Yang X H, Kuang J J, Lu T J, et al. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams [J]. Journal of Physics D: Applied Physics, 2013, 46(25): 255302. |
29 | 杨肖虎, 邝九杰, 白佳希, 等. 高孔隙率通孔金属泡沫有效导热系数的试验和理论研究[J]. 西安交通大学学报, 2014, 48(4): 79-84. |
Yang X H, Kuang J J, Bai J X, et al. Experimental and analytic investigations for effective thermal conductivity in high porosity metallic foams [J]. Journal of Xi'an Jiaotong University, 2014, 48(4): 79-84. | |
30 | Yang X H, Bai J X, Yan H B, et al. An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams [J]. Transport in Porous Media, 2014, 102(3): 403-426. |
31 | Kanaun S, Tkachenko O. Effective conductive properties of open-cell foams [J]. International Journal of Engineering Science, 2008, 46(6): 551-571. |
32 | Yao Y P, Wu H Y, Liu Z Y. A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams [J]. International Journal of Thermal Sciences, 2015, 97: 56-67. |
33 | Kumar P, Topin F, Vicente J. Determination of effective thermal conductivity from geometrical properties: application to open cell foams [J]. International Journal of Thermal Sciences, 2014, 81: 13-28. |
34 | Kumar P, Topin F. Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams [J]. Applied Thermal Engineering, 2014, 71(1): 536-547. |
35 | 李宇, 沈伟, 赵鹏, 等. 泡沫铜有效热导率的有限元研究[J]. 粉末冶金工业, 2018, 28(2): 39-44. |
Li Y, Shen W, Zhao P, et al. Finite element analysis for the effective thermal conductivity of copper foam [J]. Powder Metallurgy Industry, 2018, 28(2): 39-44. | |
36 | Shen H M, Ye Q, Meng G X. The simplified analytical models for evaluating the heat transfer performance of high-porosity metal foams [J]. International Journal of Thermophysics, 2018, 39(7): 1-14. |
37 | Ranut P. On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models [J]. Applied Thermal Engineering, 2016, 101: 496-524. |
38 | Dyga R, Witczak S. Investigation of effective thermal conductivity aluminum foams [J]. Procedia Engineering, 2012, 42: 1088-1099. |
39 | Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage [J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
40 | Coquard R, Baillis D. Numerical investigation of conductive heat transfer in high-porosity foams [J]. Acta Materialia, 2009, 57(18): 5466-5479. |
41 | 邱伟国, 陈宝明, 云和明, 等. 多孔介质X-CT图像的三维重建[J]. 渗流力学进展, 2014, 4(4): 59-64. |
Qiu W G, Chen B M, Yun H M, et al. Three dimensional reconstruction of porous media X-CT image [J]. Advances in Porous Flow, 2014, 4(4): 59-64. | |
42 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. |
Guo Z L, Zheng C G. Theory and Applications of Lattice Boltzmann Method [M]. Beijing: Science Press, 2009. | |
43 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications [M]. Beijing: Science Press, 2009. | |
44 | Qian J Y, Li Q, Yu K, et al. A novel method to determine effective thermal conductivity of porous materials [J]. Science in China Series E: Technological Sciences, 2004, 47(6): 716-724. |
45 | Wang M R, Wang J K, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3Pt 2): 036702. |
46 | Wang J K, Wang M R, Li Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer [J]. International Journal of Thermal Sciences, 2007, 46(3): 228-234. |
47 | Wang M R, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331. |
48 | Wang M R, Wang J K, Pan N, et al. Three-dimensional effect on the effective thermal conductivity of porous media [J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265. |
49 | Chiappini D. Numerical simulation of natural convection in open-cells metal foams [J]. International Journal of Heat and Mass Transfer, 2018, 117: 527-537. |
50 | 陈振乾, 顾明伟, 施明恒. 泡沫金属内石蜡相变凝固的数值模拟[J]. 热科学与技术, 2010, 9(2): 106-111. |
Chen Z Q, Gu M W, Shi M H. Numerical simulation on phase change heat transfer of paraffin in metal foams [J]. Journal of Thermal Science and Technology, 2010, 9(2): 106-111. | |
51 | 杲东彦, 陈振乾. 格子Boltzmann方法模拟泡沫金属内相变材料热传导融化传热过程[J]. 热科学与技术, 2011, 10(1): 6-11. |
Gao D Y, Chen Z Q. Lattice Boltzmann simulation of conduction melting of phase change materials in metal foams [J]. Journal of Thermal Science and Technology, 2011, 10(1): 6-11. | |
52 | 杲东彦, 陈振乾, 孙东科. 泡沫金属内相变材料融化的格子Boltzmann方法孔隙尺度模拟研究[J]. 工程热物理学报, 2016, 37(2): 385-389. |
Gao D Y, Chen Z Q, Sun D K. Lattice boltzmann simulation of melting of phase change materials in metal foams at pore scale [J]. Journal of Engineering Thermophysics, 2016, 37(2): 385-389. | |
53 | 宋林泉, 陈宝明, 郜凯凯. 基于LBM的多孔骨架热物性对固液相变的影响研究[J]. 山东建筑大学学报, 2017, 32(4): 356-364. |
Song L Q, Chen B M, Gao K K. Research on the influence of solid liquid phase change in porous skeleton media based on LBM method [J]. Journal of Shandong Jianzhu University, 2017, 32(4): 356-364. | |
54 | 张艳勇, 陈宝明, 李佳阳. 基于LBM研究骨架对相变材料融化蓄热的影响[J]. 山东建筑大学学报, 2020, 35(2): 53-61, 75. |
Zhang Y Y, Chen B M, Li J Y. Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM [J]. Journal of Shandong Jianzhu University, 2020, 35(2): 53-61, 75. | |
55 | 黄丰. 多孔介质模型的三维重构研究[D]. 合肥: 中国科学技术大学, 2007. |
Huang F. Three-dimensional reconstruction and simulation of porous media [D]. Hefei: University of Science and Technology of China, 2007. | |
56 | 赫尔曼. 由投影重建图象: CT的理论基础[M]. 严洪范, 译. 北京: 科学出版社, 1985. |
Herman G T. Reconstructing Images from Projections: the Theoretical Basis of CT [M]. Yan H F, trans. Beijing: Science Press, 1985. | |
57 | 段春梅. 基于多视图的三维结构重建[M]. 北京: 电子工业出版社, 2017. |
Duan C M. Three-dimensional Structure Reconstruction Based on Multi-view [M]. Beijing: Publishing House of Electronics Industry, 2017. | |
58 | 李佳阳. 基于真实多孔介质三维重建的双扩散自然对流模拟研究[D]. 济南: 山东建筑大学, 2020. |
Li J Y. Simulation of double diffusion natural convection based on three-dimensional reconstruction of real porous media [D]. Jinan: Shandong Jianzhu University, 2020. | |
59 | Amani Y, Takahashi A, Chantrenne P, et al. Thermal conductivity of highly porous metal foams: experimental and image based finite element analysis [J]. International Journal of Heat and Mass Transfer, 2018, 122: 1-10. |
60 | Gerbaux O, Buyens F, Mourzenko V V, et al. Transport properties of real metallic foams [J]. Journal of Colloid and Interface Science, 2010, 342(1): 155-165. |
61 | 王书华. 基于LBM的泡沫金属内纳米流体气液两相传热机理研究[D]. 镇江: 江苏科技大学, 2017. |
Wang S H. Study of heat transfer mechanism of gas-liquid two- phase in foam metal based on LBM [D]. Zhenjiang: Jiangsu University of Science and Technology, 2017. | |
62 | Iasiello M, Bianco N, Chiu W K S, et al. Thermal conduction in open-cell metal foams: anisotropy and representative volume element [J]. International Journal of Thermal Sciences, 2019, 137: 399-409. |
63 | Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties [J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875. |
64 | Kumar P, Topin F. Impact of anisotropy on geometrical and thermal conductivity of metallic foam structures [J]. Journal of Porous Media, 2015, 18(10): 949-970. |
65 | Bodla K K, Murthy J Y, Garimella S V. Microtomography-based simulation of transport through open-cell metal foams [J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(7): 527-544. |
66 | Bodla K K, Murthy J Y, Garimella S V. Resistance network-based thermal conductivity model for metal foams [J]. Computational Materials Science, 2010, 50(2): 622-632. |
67 | Ranut P, Nobile E, Mancini L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams [J]. Applied Thermal Engineering, 2014, 69(1/2): 230-240. |
68 | Ranut P, Nobile E, Mancini L. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams [J]. Experimental Thermal and Fluid Science, 2015, 67: 30-36. |
69 | Zafari M, Panjepour M, Emami M D, et al. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams [J]. Applied Thermal Engineering, 2015, 80: 347-354. |
70 | Mendes M A A, Ray S, Trimis D. A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures [J]. International Journal of Heat and Mass Transfer, 2013, 66: 412-422. |
71 | Mendes M A A, Ray S, Trimis D. An improved model for the effective thermal conductivity of open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2014, 75: 224-230. |
72 | Wulf R, Mendes M A A, Skibina V, et al. Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams [J]. International Journal of Thermal Sciences, 2014, 86: 95-103. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[7] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[11] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[12] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[13] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[14] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||