化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 1-6.DOI: 10.11949/0438-1157.20201566
收稿日期:
2020-11-02
修回日期:
2021-01-15
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
史琳
作者简介:
戴晓业(1989—),男,博士,助理研究员,基金资助:
DAI Xiaoye1(),AN Qingsong2,XU Yunting1,SHI Lin1(
)
Received:
2020-11-02
Revised:
2021-01-15
Online:
2021-06-20
Published:
2021-06-20
Contact:
SHI Lin
摘要:
部分人工合成制冷剂由于存在环保问题,目前正按照环保公约进行淘汰。淘汰后的废弃制冷剂需要进行降解销毁,我国是目前国际上主要的制冷剂生产和消费国,因此面临着巨大的废弃制冷剂销毁压力。总结归纳了废弃制冷剂目前主要的降解方法,包括焚烧热解法、等离子法、催化分解法等技术路线的研究进展,并对未来可能的发展方向进行思考与讨论。
中图分类号:
戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6.
DAI Xiaoye, AN Qingsong, XU Yunting, SHI Lin. Review of waste refrigerant destruction methods[J]. CIESC Journal, 2021, 72(S1): 1-6.
国别 | 设施数量 | 使用的技术 | 销毁能力/(t/a) |
---|---|---|---|
美国 | 11 | 回转窑法/等离子体法/固定炉单元等 | 318 |
捷克 | 1 | 回转窑法 | 40 |
芬兰 | 1 | 回转窑法 | 545 |
德国 | 7 | 焚烧法、反应炉裂解法、多孔反应堆法 | 1600 |
匈牙利 | 5 | 回转窑法、液体喷射焚烧法 | 88 |
英国 | 2 | 高温焚烧法 | — |
日本 | 80 | 水泥窑/弃物焚烧法/液体喷射焚烧法、微波等离子体法、气相催化脱卤法、过热蒸汽反应堆法、固相碱性反应堆法 | 2636 |
表1 美国、欧盟、日本的制冷剂销毁设施的数量、销毁能力和技术[4]
Table 1 Amount, capacity and technology of refrigerant destruction equipment in United States, European Union and Japan[4]
国别 | 设施数量 | 使用的技术 | 销毁能力/(t/a) |
---|---|---|---|
美国 | 11 | 回转窑法/等离子体法/固定炉单元等 | 318 |
捷克 | 1 | 回转窑法 | 40 |
芬兰 | 1 | 回转窑法 | 545 |
德国 | 7 | 焚烧法、反应炉裂解法、多孔反应堆法 | 1600 |
匈牙利 | 5 | 回转窑法、液体喷射焚烧法 | 88 |
英国 | 2 | 高温焚烧法 | — |
日本 | 80 | 水泥窑/弃物焚烧法/液体喷射焚烧法、微波等离子体法、气相催化脱卤法、过热蒸汽反应堆法、固相碱性反应堆法 | 2636 |
文献 | 时间 | 催化剂 | 反应物 | 产物 | 反应温度/℃ | 最高转化率/% |
---|---|---|---|---|---|---|
[ | 2015 | 湿润浸渍法制备的系列Pd/AlF3 | HFC-245fa | HFO-1234ze | 300 | 79.5 |
[ | 2018 | 溶胶-凝胶法合成的介孔纳米氟化铝 | HFC-245fa | HFO-1234ze | 280 | 57 |
[ | 2019 | Cr2O3纳米颗粒 | HFC-245fa | HFO-1234ze | 500 | — |
[ | 2018 | 氟化NiO/Cr2O3 | HFC-245fa | HFO-1234ze | 450 | 89 |
Cr2O3 | HFC-245fa | HFO-1234ze | 450 | 68 | ||
[ | 2015 | NiAlF | HFC134 | FEP(氟化乙烯) | 430 | 20.1 |
[ | 2017 | Cr2O3 | HFC-245eb | HFO-1234y | 350 | 80.1 |
表2 部分热催化转化反应试验结果
Table 2 Results of some thermal catalysis conversion experiments
文献 | 时间 | 催化剂 | 反应物 | 产物 | 反应温度/℃ | 最高转化率/% |
---|---|---|---|---|---|---|
[ | 2015 | 湿润浸渍法制备的系列Pd/AlF3 | HFC-245fa | HFO-1234ze | 300 | 79.5 |
[ | 2018 | 溶胶-凝胶法合成的介孔纳米氟化铝 | HFC-245fa | HFO-1234ze | 280 | 57 |
[ | 2019 | Cr2O3纳米颗粒 | HFC-245fa | HFO-1234ze | 500 | — |
[ | 2018 | 氟化NiO/Cr2O3 | HFC-245fa | HFO-1234ze | 450 | 89 |
Cr2O3 | HFC-245fa | HFO-1234ze | 450 | 68 | ||
[ | 2015 | NiAlF | HFC134 | FEP(氟化乙烯) | 430 | 20.1 |
[ | 2017 | Cr2O3 | HFC-245eb | HFO-1234y | 350 | 80.1 |
文献 | 时间 | 反应物 | 产物 | 催化剂 | 条件 | 结论 |
---|---|---|---|---|---|---|
[ | 2006 | CFC-11 | CHCl2F和Cl- | TiO2悬浊液 | 常温 | 转化率29% |
[ | 2005 | CFC-12 | CO2, HF, Cl2等 | 无 | 常温 | CFC吸收波长200~260 nm |
TiO2颗粒 | 常温 | 吸收波长范围扩大至365~366 nm, 404~408 nm, 577~579 nm | ||||
[ | 1998 | HFC-152a | CH3CF2O, O2等 | 无 | 185 nm光 | 可直接发生分解 |
TiO2颗粒 | 254 nm光 | 分解率与无催化剂185 nm光解相同 | ||||
TiO2颗粒 | 185 nm光 | 分解率约为无催化剂185 nm光解速率2倍 | ||||
[ | 2014 | 部分HFCs | — | Bi2O3 | 常温 | Bi2O3光催化效率比直接光解效率高 |
表3 部分光催化转化反应试验结果
Table 3 Results of some photocatalysis experiments
文献 | 时间 | 反应物 | 产物 | 催化剂 | 条件 | 结论 |
---|---|---|---|---|---|---|
[ | 2006 | CFC-11 | CHCl2F和Cl- | TiO2悬浊液 | 常温 | 转化率29% |
[ | 2005 | CFC-12 | CO2, HF, Cl2等 | 无 | 常温 | CFC吸收波长200~260 nm |
TiO2颗粒 | 常温 | 吸收波长范围扩大至365~366 nm, 404~408 nm, 577~579 nm | ||||
[ | 1998 | HFC-152a | CH3CF2O, O2等 | 无 | 185 nm光 | 可直接发生分解 |
TiO2颗粒 | 254 nm光 | 分解率与无催化剂185 nm光解相同 | ||||
TiO2颗粒 | 185 nm光 | 分解率约为无催化剂185 nm光解速率2倍 | ||||
[ | 2014 | 部分HFCs | — | Bi2O3 | 常温 | Bi2O3光催化效率比直接光解效率高 |
1 | 张朝晖, 陈敬良, 高钰, 等. 《蒙特利尔议定书》基加利修正案对制冷空调行业的影响分析[J]. 制冷与空调, 2017, 17(1): 1-7, 15. |
Zhang Z H, Chen J L, Gao Y, et al. Analysis on the influence of Kigali Amendment to Montreal Protocol to refrigeration and air-conditioning industry [J]. Refrigeration and Air-Conditioning, 2017, 17(1): 1-7, 15. | |
2 | 中国制冷空调行业制冷剂替代政策及进展[R]. 北京: 环境保护部环境保护对外合作中心, 2018. |
Policy and progress of refrigerant substitution in air-conditioning industry [R]. Beijing: Foreign Economic Cooperation Office, Ministry of Ecology and Environment, 2018. | |
3 | Country programme data and prospects for implementation [R]. Montreal: United Nations Environment Programme, 2017. |
4 | 张贺然, 于可利, 邱金凤, 等. 美国、欧盟、日本的制冷剂回收处置现状[J]. 资源再生, 2018, (11): 48-51. |
Zhang H R, Yu K L, Qiu J F, et al. Current status of refrigerant recovery and disposal in the United States, the European Union, and Japan [J]. Resource Recycling, 2018, (11): 48-51. | |
5 | Report of the fifteenth meeting of the Parties to the Montreal Protocol on substances that deplete the ozone layer [R]. Nairobi: United Nations Environment Programme, 2003. |
6 | Tokuhashi K, Urano Y, Horiguchi S, et al. Incineration of CFC-12 by burner methods [J]. Combustion Science and Technology, 1990, 72(1/2/3): 117-129. |
7 | Ueno H, Iwasaki Y, Tatsuichi S, et al. Destruction of chlorofluorocarbons in a cement kiln [J]. Journal of the Air & Waste Management Association, 1997, 47(11): 1220-1223. |
8 | Lemieux P M, Ryan J V, Bass C, et al. Emissions of trace products of incomplete combustion from a pilot-scale incinerator secondary combustion chamber [J]. Journal of the Air & Waste Management Association, 1996, 46(4): 309-316. |
9 | Wang L C, Wang I C, Chang J E, et al. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater [J]. Journal of Hazardous Materials, 2007, 148(1/2): 296-302. |
10 | Tsang W, Burgess D R, Babushok V. On the incinerability of highly fluorinated organic compounds [J]. Combustion Science and Technology, 1998, 139(1): 385-402. |
11 | Lamb C, Dellinger B, Wagner M, et al. Incinerability of halons and HCFCs: theoretical calculations of DRE and czone-depleting or global-warming gases [J]. Environmental Engineering Science, 2010, 27: 7. |
12 | International ozone depleting substances (ODS) destruction in the US & Abroad [R]. Fairfax: ICF International, 2018. |
13 | 万小春, 胡建信, 张剑波. 氟利昂替代品降解产物TFA对生态环境的影响评价[J]. 环境科学研究, 2001, 14(2): 26-29. |
Wan X C, Hu J X, Zhang J B. Evaluation of environment impact of trifluoroacetates from the degradation of CFC substitutes [J]. Research of Environmental Sciences, 2001, 14(2): 26-29. | |
14 | 毕晓妹, 刘志莲, 张炉青, 等. 含氟有机化合物的转产与降解研究进展[J]. 有机氟工业, 2011, (1): 42-46, 52. |
Bi X M, Liu Z L, Zhang L Q, et al. Degradation research progress of fluorinated organic compounds [J]. Organo-Fluorine Industry, 2011, (1): 42-46, 52. | |
15 | Ogata A, Kim H H, Futamura S, et al. Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma [J]. Applied Catalysis B: Environmental, 2004, 53(3): 175-180. |
16 | Ren G Q, Jia L J, Zhao G Q, et al. Catalytic decomposition of dichlorodifluoromethane (CFC-12) over MgO/ZrO2 solid base catalyst [J]. Catalysis Letters, 2019, 149(2): 507-512. |
17 | Han T U, Yoo B S, Kim Y M, et al. Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a) [J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1611-1619. |
18 | Iizuka A, Ishizaki H, Mizukoshi A, et al. Simultaneous decomposition and fixation of F-gases using waste concrete [J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11808-11814. |
19 | Wang F, Zhang W X, Liang Y, et al. Pd/Al_F3 catalysts for catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane [J]. Chemical Research in Chinese Universities, 2015, 31(6): 1003-1006. |
20 | Mao W, Bai Y B, Jia Z H, et al. Highly efficient gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over mesoporous nano-aluminum fluoride prepared from a polyol mediated sol-gel process [J]. Applied Catalysis A: General, 2018, 564: 147-156. |
21 | Wang H L, Han W F, Li X L, et al. Solution combustion synthesis of Cr2O3 nanoparticles and the catalytic performance for dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene [J]. Molecules, 2019, 24(2): 361. |
22 | Luo J W, Song J D, Jia W Z, et al. Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over fluorinated NiO/Cr2O3 catalysts [J]. Applied Surface Science, 2018, 433: 904-913. |
23 | Jia W Z, Liu M, Lang X W, et al. Catalytic dehydrofluorination of 1,1,1,2-tetrafluoroethane to synthesize trifluoroethylene over a modified NiO/Al2O3 catalyst [J]. Catalysis Science & Technology, 2015, 5(6): 3103-3107. |
24 | Lim S, Kim M S, Choi J W, et al. Catalytic dehydrofluorination of 1,1,1,2,3-pentafluoropropane (HFC-245eb) to 2,3,3,3-tetrafluoropropene (HFO-1234yf) using in situ fluorinated chromium oxyfluoride catalyst [J]. Catalysis Today, 2017, 293/294: 42-48. |
25 | Zheng X, Xiao Q, Zhang Y, et al. Deactivation of Pd/C catalysts in the hydrodechlorination of the chlorofluorocarbons CFC-115 and CFC-12 [J]. Catalysis Today, 2011, 175(1): 615-618. |
26 | Mori T, Yasuoka T, Morikawa Y. Hydrodechlorination of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) over supported ruthenium and other noble metal catalysts [J]. Catalysis Today, 2004, 88(3/4): 111-120. |
27 | Legawiec-Jarzyna M, Śrębowata A, Juszczyk W, et al. Hydrodechlorination of dichlorodifluoromethane (CFC-12) on Pd-Pt/Al2O3 catalysts [J]. Catalysis Today, 2004, 88(3/4): 93-101. |
28 | Bonarowska M, Malinowski A, Juszczyk W, et al. Hydrodechlorination of CCl2F2 (CFC-12) over silica-supported palladium-gold catalysts [J]. Applied Catalysis B: Environmental, 2001, 30(1/2): 187-193. |
29 | Winkelmann K, Calhoun R L, Mills G. Chain photoreduction of CCl3F in TiO2 suspensions: enhancement induced by O2 [J]. The Journal of Physical Chemistry A, 2006, 110(51): 13827-13835. |
30 | Tennakone K, Wijayantha K G U. Photocatalysis of CFC degradation by titanium dioxide [J]. Applied Catalysis B: Environmental, 2005, 57(1): 9-12. |
31 | Sangchakr B, Hisanaga T, Tanaka K. Photocatalytic degradation of 1,1-difluoroethane (HFC-152a) [J]. Chemosphere, 1998, 36(9): 1985-1992. |
32 | Yin L F. Photocatalytic degradation of hydrofluorocarbon under visible light irradiation [J]. Applied Mechanics and Materials, 2014, 651/652/653: 1357-1360. |
33 | Kutsuna S, Takeuchi K, Ibusuki T. Adsorption and reaction of trichlorofluoromethane on various particles [J]. Journal of Atmospheric Chemistry, 1992, 14(1/2/3/4): 1-10. |
34 | 王丽敏, 王利清, 张一弛, 等. 光热协同催化技术在能源领域的应用[J]. 化工进展, 2017, 36(7): 2457-2463. |
Wang L M, Wang L Q, Zhang Y C, et al. Photothermal synergistic catalytic technology in energy field [J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2457-2463. | |
35 | Zhang Y W, Xu C Y, Chen J C, et al. A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy [J]. Applied Energy, 2015, 156: 223-229. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||