化工学报 ›› 2022, Vol. 73 ›› Issue (1): 241-254.DOI: 10.11949/0438-1157.20210778
收稿日期:
2021-06-09
修回日期:
2021-09-14
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
辛忠
作者简介:
高文莉(1992—),女,博士研究生,基金资助:
Received:
2021-06-09
Revised:
2021-09-14
Online:
2022-01-05
Published:
2022-01-18
Contact:
Zhong XIN
摘要:
为了提高Ni/SBA-16催化剂在低温下CO甲烷化中的活性,通过引入Fe助剂制备了Ni-Fe/SBA-16双金属催化剂。对催化剂进行XPS、XRD、HRTEM及EDS-mapping表征的结果表明,Fe的加入与Ni形成了Ni3Fe合金,减小了金属颗粒尺寸,使得还原后金属颗粒平均粒径从60 nm降低到30 nm左右。同时H2-TPR的结果表明,Ni3Fe合金的形成增强了金属Ni与载体之间的相互作用,从而能够减弱Ni颗粒在还原过程及反应过程中的团聚。最后,由CO-TPD和H2-TPD的测试结果可知,Ni3Fe合金的形成促进了催化剂对反应气体CO和H2的解离,从而提高了催化剂在低温下的CO甲烷化活性。当空速为150000 h-1、压力为0.1 MPa、V(H2)∶V(CO)∶V(N2)=3∶1∶1时,CO最低完全转化温度可以从300°C降低到250°C,同时CH4的选择性保持在90%。
中图分类号:
高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254.
Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature[J]. CIESC Journal, 2022, 73(1): 241-254.
催化剂 | Ni金属含量①/ % | Fe金属含量①/ % | 比表面积②/ (m2/g) | 孔容③/ (cm3/g) | 金属分散度④/ % | 金属比表面积④/ (m2/g) | 金属颗粒尺寸④/ nm |
---|---|---|---|---|---|---|---|
S16 | — | — | 938 | 0.74 | — | — | — |
Ni/S16 | 9.2 | — | 849 | 0.58 | 2.89 | 1.19 | 35.1 |
Ni-1Fe/S16 | 8.5 | 0.8 | 822 | 0.57 | 3.32 | 2.31 | 32.1 |
Ni-2Fe/S16 | 8.6 | 1.7 | 732 | 0.51 | 3.85 | 2.89 | 30.5 |
Ni-3Fe/S16 | 8.3 | 2.5 | 672 | 0.46 | 2.66 | 1.02 | 38.2 |
表1 载体及催化剂理化性质
Table 1 Physical and chemical properties of support and catalyst
催化剂 | Ni金属含量①/ % | Fe金属含量①/ % | 比表面积②/ (m2/g) | 孔容③/ (cm3/g) | 金属分散度④/ % | 金属比表面积④/ (m2/g) | 金属颗粒尺寸④/ nm |
---|---|---|---|---|---|---|---|
S16 | — | — | 938 | 0.74 | — | — | — |
Ni/S16 | 9.2 | — | 849 | 0.58 | 2.89 | 1.19 | 35.1 |
Ni-1Fe/S16 | 8.5 | 0.8 | 822 | 0.57 | 3.32 | 2.31 | 32.1 |
Ni-2Fe/S16 | 8.6 | 1.7 | 732 | 0.51 | 3.85 | 2.89 | 30.5 |
Ni-3Fe/S16 | 8.3 | 2.5 | 672 | 0.46 | 2.66 | 1.02 | 38.2 |
催化剂 | 还原前NiO平均 颗粒尺寸/nm | 还原后Ni平均 颗粒尺寸/nm | 反应后Ni平均 颗粒尺寸/nm |
---|---|---|---|
Ni/S16 | 22.2 | 27.9 | 30.1 |
Ni-1Fe/S16 | 20.4 | 19.6 | 20.9 |
Ni-2Fe/S16 | 19.6 | 19.5 | 19.6 |
Ni-3Fe/S16 | 16.5 | 16.5 | 16.9 |
表2 金属Ni及其氧化物颗粒平均尺寸
Table 2 The crystalline size of metal and its oxide
催化剂 | 还原前NiO平均 颗粒尺寸/nm | 还原后Ni平均 颗粒尺寸/nm | 反应后Ni平均 颗粒尺寸/nm |
---|---|---|---|
Ni/S16 | 22.2 | 27.9 | 30.1 |
Ni-1Fe/S16 | 20.4 | 19.6 | 20.9 |
Ni-2Fe/S16 | 19.6 | 19.5 | 19.6 |
Ni-3Fe/S16 | 16.5 | 16.5 | 16.9 |
催化剂 | 低温峰 面积比/% | 高温峰 面积比/% | 500°C金属 还原度/% |
---|---|---|---|
Ni/S16 | 62.4 | 37.6 | 96.9 |
Ni-1Fe/S16 | 49.2 | 50.8 | 71.3 |
Ni-2Fe/S16 | 44.0 | 56.0 | 68.0 |
Ni-3Fe/S16 | 60.6 | 39.4 | 81.0 |
表3 催化剂的H2-TPR 分峰分析结果
Table 3 The peak analysis result of H2-TPR of catalysts
催化剂 | 低温峰 面积比/% | 高温峰 面积比/% | 500°C金属 还原度/% |
---|---|---|---|
Ni/S16 | 62.4 | 37.6 | 96.9 |
Ni-1Fe/S16 | 49.2 | 50.8 | 71.3 |
Ni-2Fe/S16 | 44.0 | 56.0 | 68.0 |
Ni-3Fe/S16 | 60.6 | 39.4 | 81.0 |
催化剂 | H2 | CO | ||||
---|---|---|---|---|---|---|
吸附量/(cm3/g) | 300°C 之前面积比/% | 吸附量/(cm3/g) | 300°C 之前面积比/% | |||
Ni/S16 | 0.179 | 80.1 | 1.131 | 59.3 | ||
Ni-1Fe/S16 | 0.486 | 81.2 | 1.414 | 68.1 | ||
Ni-2Fe/S16 | 0.476 | 83.6 | 1.770 | 70.3 | ||
Ni-3Fe/S16 | 0.510 | 85.3 | 1.700 | 64.2 |
表4 催化剂吸附的H2和CO量
Table 4 The absorbed H2 and CO quantity of catalyst
催化剂 | H2 | CO | ||||
---|---|---|---|---|---|---|
吸附量/(cm3/g) | 300°C 之前面积比/% | 吸附量/(cm3/g) | 300°C 之前面积比/% | |||
Ni/S16 | 0.179 | 80.1 | 1.131 | 59.3 | ||
Ni-1Fe/S16 | 0.486 | 81.2 | 1.414 | 68.1 | ||
Ni-2Fe/S16 | 0.476 | 83.6 | 1.770 | 70.3 | ||
Ni-3Fe/S16 | 0.510 | 85.3 | 1.700 | 64.2 |
1 | Hussain I, Jalil A A, Fatah N A A, et al. A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite viain situ ESR and FTIR studies[J]. Energy Conversion and Management, 2020, 211: 112754. |
2 | Han Y H, Quan Y H, Hao P P, et al. Highly anti-sintering and anti-coking ordered mesoporous silica carbide supported nickel catalyst for high temperature CO methanation[J]. Fuel, 2019, 257: 116006. |
3 | Liu Q, Zhong Z Y, Gu F N, et al. CO methanation on ordered mesoporous Ni-Cr-Al catalysts: effects of the catalyst structure and Cr promoter on the catalytic properties[J]. Journal of Catalysis, 2016, 337: 221-232. |
4 | Mills G A, Steffgen F W. Catalytic methanation[J]. Catalysis Reviews, 1974, 8(1): 159-210. |
5 | Meng F H, Li Z, Liu J, et al. Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 250-258. |
6 | Zhang J Y, Xin Z, Meng X, et al. Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts[J]. Fuel, 2013, 109: 693-701. |
7 | Ren J, Li H D, Jin Y Y, et al. Silica/titania composite-supported Ni catalysts for CO methanation: effects of Ti species on the activity, anti-sintering, and anti-coking properties[J]. Applied Catalysis B: Environmental, 2017, 201: 561-572. |
8 | Zhang J Y, Xin Z, Meng X, et al. Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method[J]. Industrial & Engineering Chemistry Research, 2013, 52(41): 14533-14544. |
9 | Lv Y H, Xin Z, Meng X, et al. Essential role of organic additives in preparation of efficient Ni/KIT-6 catalysts for CO methanation[J]. Applied Catalysis A: General, 2018, 558: 99-108. |
10 | Li S S, Gong D D, Tang H G, et al. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation[J]. Chemical Engineering Journal, 2018, 334: 2167-2178. |
11 | Lv Y H, Xin Z, Meng X, et al. Ni based catalyst supported on KIT-6 silica for CO methanation: confinement effect of three dimensional channel on NiO and Ni particles[J]. Microporous and Mesoporous Materials, 2018, 262: 89-97. |
12 | Bian Z C, Xin Z, Meng X, et al. Effect of citric acid on the synthesis of CO methanation catalysts with high activity and excellent stability[J]. Industrial & Engineering Chemistry Research, 2017, 56(9): 2383-2392. |
13 | Bai X B, Wang S, Sun T J, et al. Influence of operating conditions on carbon deposition over a Ni catalyst for the production of synthetic natural gas (SNG) from coal[J]. Catalysis Letters, 2014, 144(12): 2157-2166. |
14 | Rostrup-Nielsen J R, Pedersen K, Sehested J. High temperature methanation: sintering and structure sensitivity[J]. Applied Catalysis A: General, 2007, 330: 134-138. |
15 | Simonsen S B, Chorkendorff I, Dahl S, et al. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM[J]. Journal of the American Chemical Society, 2010, 132(23): 7968-7975. |
16 | Simonsen S B, Chorkendorff I, Dahl S, et al. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM[J]. Journal of Catalysis, 2011, 281(1): 147-155. |
17 | Trimm D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today, 1999, 49(1/2/3): 3-10. |
18 | Rönsch S, Schneider J, Matthischke S, et al. Review on methanation—from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. |
19 | Tao M, Xin Z, Meng X, et al. Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction[J]. RSC Advances, 2016, 6(42): 35875-35883. |
20 | Cao H X, Zhang J, Guo C L, et al. Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation[J]. Applied Surface Science, 2017, 426: 40-49. |
21 | Cao H X, Zhang J, Guo C L, et al. Highly dispersed Ni nanoparticles on 3D-mesoporous KIT-6 for CO methanation: effect of promoter species on catalytic performance[J]. Chinese Journal of Catalysis, 2017, 38(7): 1127-1137. |
22 | 王昱涵, 白思雨, 崔丽杰, 等. Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性[J]. 化工学报, 2018, 69(5): 2063-2072. |
Wang Y H, Bai S Y, Cui L J, et al. Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018, 69(5): 2063-2072. | |
23 | Peng H G, Ying J W, Zhang J Y, et al. La-doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO[J]. Chinese Journal of Catalysis, 2017, 38(1): 39-47. |
24 | Liu Y, Sheng W, Hou Z G, et al. Homogeneous and highly dispersed Ni-Ru on a silica support as an effective CO methanation catalyst[J]. RSC Advances, 2018, 8(4): 2123-2131. |
25 | Konishcheva M V, Potemkin D I, Snytnikov P V, et al. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation[J]. Applied Catalysis B: Environmental, 2018, 221: 413-421. |
26 | Winter L R, Gomez E, Yan B H, et al. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Applied Catalysis B: Environmental, 2018, 224: 442-450. |
27 | Rombi E, Cutrufello M G, Atzori L, et al. CO methanation on Ni-Ce mixed oxides prepared by hard template method[J]. Applied Catalysis A: General, 2016, 515: 144-153. |
28 | Ai H M, Yang H Y, Liu Q, et al. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance[J]. Chinese Journal of Catalysis, 2018, 39(2): 297-308. |
29 | Guo C L, Wu Y Y, Qin H Y, et al. CO methanation over ZrO2/Al2O3 supported Ni catalysts: a comprehensive study[J]. Fuel Processing Technology, 2014, 124: 61-69. |
30 | Liu Q, Gu F N, Gao J J, et al. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation[J]. Journal of Energy Chemistry, 2014, 23(6): 761-770. |
31 | Hong E, Bang S, Cho J H, et al. Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/γ-Al2O3 catalysts: synergetic effect of Ni-Fe alloy formation[J]. Applied Catalysis A: General, 2017, 542: 146-153. |
32 | Kustov A L, Frey A M, Larsen K E, et al. CO methanation over supported bimetallic Ni-Fe catalysts: from computational studies towards catalyst optimization[J]. Applied Catalysis A: General, 2007, 320: 98-104. |
33 | Meng F H, Zhong P Z, Li Z, et al. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. Journal of Chemistry, 2014, 2014: 1-7. |
34 | Tian D Y, Liu Z H, Li D D, et al. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure[J]. Fuel, 2013, 104: 224-229. |
35 | Wang H, Zhang J F, Bai Y X, et al. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 548-556. |
36 | Zhang J F, Bai Y X, Zhang Q D, et al. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132: 211-218. |
37 | Mesa M, Sierra L, Patarin J, et al. Morphology and porosity characteristics control of SBA-16 mesoporous silica. Effect of the triblock surfactant Pluronic F127 degradation during the synthesis[J]. Solid State Sciences, 2005, 7(8): 990-997. |
38 | Laosiripojana N, Assabumrungrat S. Catalytic steam reforming of ethanol over high surface area CeO2: the role of CeO2 as an internal pre-reforming catalyst[J]. Applied Catalysis B: Environmental, 2006, 66(1/2): 29-39. |
39 | Bian Z C, Meng X, Tao M, et al. Uniform Ni particles on amino-functionalized SBA-16 with excellent activity and stability for syngas methanation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 184-191. |
40 | Ren J, Mebrahtu C, Palkovits R. Ni-based catalysts supported on Mg-Al hydrotalcites with different morphologies for CO2 methanation: exploring the effect of metal-support interaction[J]. Catalysis Science & Technology, 2020, 10(6): 1902-1913. |
41 | Parastaev A, Muravev V, Huertas Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts[J]. Nature Catalysis, 2020, 3(6): 526-533. |
42 | 何璐铭, 辛忠, 高文莉, 等. 静电纺丝法制备高活性多孔Ni/SiO2甲烷化催化剂[J]. 化工学报, 2020, 71(11): 5007-5015. |
He L M, Xin Z, Gao W L, et al. Highly efficient porous Ni/SiO2 catalysts prepared by electrospinning method for CO methanation[J]. CIESC Journal, 2020, 71(11): 5007-5015. | |
43 | Gao J J, Liu Q, Gu F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29): 22759-22776. |
44 | Bligaard T, Nørskov J K, Dahl S, et al. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004, 224(1): 206-217. |
45 | Liu Q, Gu F N, Lu X P, et al. Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation[J]. Applied Catalysis A: General, 2014, 488: 37-47. |
46 | Liu J, Li C M, Wang F, et al. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catalysis Science & Technology, 2013, 3(10): 2627. |
47 | Eckle S, Anfang H G, Behm R J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1361-1367. |
48 | Cesteros Y, Salagre P, Medina F, et al. Effect of the alumina phase and its modification on Ni/Al2O3 catalysts for the hydrodechlorination of 1, 2, 4-trichlorobenzene[J]. Applied Catalysis B: Environmental, 1999, 22(2): 135-147. |
49 | Zhao B R, Liu P, Li S, et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy[J]. Applied Catalysis B: Environmental, 2020, 278: 119307. |
50 | Han X X, Yang J Z, Guo H L, et al. Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8401-8411. |
51 | Andersson M P, Abild-Pedersen F, Remediakis I N, et al. Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces[J]. Journal of Catalysis, 2008, 255(1): 6-19. |
52 | Tanksale A, Beltramini J N, Dumesic J A, et al. Effect of Pt and Pd promoter on Ni supported catalysts—a TPR/TPO/TPD and microcalorimetry study[J]. Journal of Catalysis, 2008, 258(2): 366-377. |
[1] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[2] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[3] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[4] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[5] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[6] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[7] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[8] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[9] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[10] | 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
[11] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[12] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[13] | 沈嘉辉, 王侃宏, 郁达伟, 胡大洲, 魏源送. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155. |
[14] | 刘振宇. 煤地下气化低效的化学反应工程根源:滞留层及通道中的传质与反应[J]. 化工学报, 2022, 73(8): 3299-3306. |
[15] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||