化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2858-2868.DOI: 10.11949/0438-1157.20230237
收稿日期:
2023-03-14
修回日期:
2023-07-06
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
沈胜强
作者简介:
牛超(1998—),男,硕士,niuchao1@mail.dlut.edu.cn
基金资助:
Chao NIU(), Shengqiang SHEN(), Yan YANG, Bonian PAN, Yiqiao LI
Received:
2023-03-14
Revised:
2023-07-06
Online:
2023-07-05
Published:
2023-08-31
Contact:
Shengqiang SHEN
摘要:
在液化天然气(LNG)运输船中的蒸发气(BOG)再液化系统中引入喷射器可以节约能源,提高系统工作效率。由于LNG的存储工况较为严苛,设计高性能的喷射器至关重要。采用气体动力学函数法对给定工况下的甲烷BOG喷射器进行了结构设计。基于Mixture多相流模型和SST k-ω湍流模型建立了甲烷BOG喷射器数值计算模型,计算分析了运行参数和结构参数对甲烷BOG喷射器引射性能的影响规律。研究结果表明,对于固定结构的甲烷BOG喷射器,存在最佳工作压力使引射比达到最大值,提升引射压力可以持续提高引射比。在设计工况下,保持其他结构参数不变,当主喷嘴出口直径和主喷嘴出口位置分别为9.6 mm和41 mm时,喷射器内部由激波和涡流造成的能量损失最小,引射比达到最大值。
中图分类号:
牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868.
Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector[J]. CIESC Journal, 2023, 74(7): 2858-2868.
参数 | 数值 |
---|---|
工作流体压力/MPa | 20.00 |
工作流体温度/K | 203.15 |
引射流体压力/MPa | 0.30 |
引射流体温度/K | 153.15 |
混合流体压力/MPa | 1.20 |
工作流体质量流量/(kg/s) | 0.60 |
引射比 | 0.2932 |
表1 甲烷BOG喷射器的初始设计参数
Table 1 Design parameters of the methane BOG ejector
参数 | 数值 |
---|---|
工作流体压力/MPa | 20.00 |
工作流体温度/K | 203.15 |
引射流体压力/MPa | 0.30 |
引射流体温度/K | 153.15 |
混合流体压力/MPa | 1.20 |
工作流体质量流量/(kg/s) | 0.60 |
引射比 | 0.2932 |
参数 | 数值 |
---|---|
主喷嘴喉部直径Dt/mm | 3.8 |
主喷嘴出口直径Do/mm | 10.2 |
主喷嘴出口位置NXP/mm | 52.0 |
圆柱形混合管直径Dmt/mm | 16.7 |
圆柱形混合管长度Lmt/mm | 71.0 |
扩压室长度Ld/mm | 124.0 |
工作流体入口直径Dm/mm | 12.8 |
引射流体入口直径Ds/mm | 35.0 |
混合流体出口直径Dd/mm | 32.0 |
表2 甲烷BOG喷射器的主要结构参数
Table 2 Structural parameters of the methane BOG ejector
参数 | 数值 |
---|---|
主喷嘴喉部直径Dt/mm | 3.8 |
主喷嘴出口直径Do/mm | 10.2 |
主喷嘴出口位置NXP/mm | 52.0 |
圆柱形混合管直径Dmt/mm | 16.7 |
圆柱形混合管长度Lmt/mm | 71.0 |
扩压室长度Ld/mm | 124.0 |
工作流体入口直径Dm/mm | 12.8 |
引射流体入口直径Ds/mm | 35.0 |
混合流体出口直径Dd/mm | 32.0 |
源项 | 蒸发过程(T>Tsat) | 冷凝过程(T<Tsat) |
---|---|---|
质量源项 | 液相: | 液相: |
气相: | 气相: | |
能量源项 |
表3 蒸发-冷凝模型中的质量和能量源项
Table 3 Mass and energy source terms of evaporation-condensation model
源项 | 蒸发过程(T>Tsat) | 冷凝过程(T<Tsat) |
---|---|---|
质量源项 | 液相: | 液相: |
气相: | 气相: | |
能量源项 |
网格类型 | 网格数/个 | 安全 因子Fs | 网格收敛 误差ε | GCI |
---|---|---|---|---|
结构网格 | N1=127231 | 1.25 | ε ε | GCI GCI |
N2=76346 | ||||
N3=31502 |
表4 网格收敛指数(GCI)计算结果
Table 4 Calculation results of GCI estimation
网格类型 | 网格数/个 | 安全 因子Fs | 网格收敛 误差ε | GCI |
---|---|---|---|---|
结构网格 | N1=127231 | 1.25 | ε ε | GCI GCI |
N2=76346 | ||||
N3=31502 |
1 | 任金平, 马霞霞, 陈叔平, 等. LNG调峰装置BOG分析与计算[J]. 低温与超导, 2014, 42(8): 34-37. |
Ren J P, Ma X X, Chen S P, et al. BOG analysis and calculation of LNG peak-shaving plant[J]. Cryogenics & Superconductivity, 2014, 42(8): 34-37. | |
2 | Romero Gómez J, Romero Gómez M, Lopez Bernal J, et al. Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers[J]. Energy Conversion and Management, 2015, 94: 261-274. |
3 | Bodys J, Smolka J, Palacz M, et al. Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system[J]. Energy, 2016, 117: 620-631. |
4 | 余超群, 臧润清, 段振坤. 太阳能蒸汽喷射式制冷机性能[J]. 化工学报, 2018, 69(S2): 205-209. |
Yu C Q, Zang R Q, Duan Z K. Performance of solar steam ejector refrigerator[J]. CIESC Journal, 2018, 69(S2): 205-209. | |
5 | Shen S Q, Zhou S H, Yang Y, et al. Study of steam parameters on the performance of a TVC-MED desalination plant[J]. Desalination and Water Treatment, 2011, 33(1/2/3): 300-308. |
6 | Chen Q, Ja M K, Li Y, et al. Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system[J]. Energy, 2019, 166: 871-885. |
7 | Pei P C, Ren P, Li Y H, et al. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system[J]. Applied Energy, 2019, 235: 729-738. |
8 | Song Y J, Wang X L, Wang L, et al. A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system[J]. Applied Energy, 2021, 300: 117442. |
9 | Wang F, Shen S Q. A novel solar bi-ejector refrigeration system and the performance of the added injector with different structures and operation parameters[J]. Solar Energy, 2009, 83(12): 2186-2194. |
10 | 陈威, 于梅红, 赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277. |
Chen W, Yu M H, Zhao H X. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector[J]. CIESC Journal, 2020, 71(7): 3266-3277. | |
11 | Tan H B, Zhao Q X, Sun N N, et al. Enhancement of energy performance in a boil-off gas re-liquefaction system of LNG carriers using ejectors[J]. Energy Conversion and Management, 2016, 126: 875-888. |
12 | Allouche Y, Bouden C, Varga S. A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental operating conditions for a solar-driven refrigeration system[J]. International Journal of Refrigeration, 2014, 39: 186-195. |
13 | Wang X D, Dong J L, Zhang G L, et al. The primary pseudo-shock pattern of steam ejector and its influence on pumping efficiency based on CFD approach[J]. Energy, 2019, 167: 224-234. |
14 | Hamzaoui M, Nesreddine H, Aidoun Z. A numerical and experimental performance assessment of a single-phase supersonic ejector[J]. Arabian Journal for Science and Engineering, 2022, 47(7): 8899-8913. |
15 | Zhu Y H, Cai W J, Wen C Y, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29(5/6): 898-905. |
16 | Chen W X, Chong D T, Yan J J, et al. The numerical analysis of the effect of geometrical factors on natural gas ejector performance[J]. Applied Thermal Engineering, 2013, 59(1/2): 21-29. |
17 | Ramesh A S, Sekhar S J. Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector[J]. Energy, 2018, 164: 1097-1113. |
18 | Ren J B, Miao C, Wu Y Z, et al. Geometry dimension optimization of a liquid-gas vacuum ejector for MED-TVC system[J]. Applied Thermal Engineering, 2022, 214: 118907. |
19 | 武洪强, 刘中良, 李艳霞, 等. 蒸汽喷射器混合室两相流动的数值模拟[J]. 化工学报, 2017, 68(7): 2696-2702. |
Wu H Q, Liu Z L, Li Y X, et al. Two-phase flow simulation in mixing chamber of steam jet ejector[J]. CIESC Journal, 2017, 68(7): 2696-2702. | |
20 | Li Y Q, Niu C, Shen S Q, et al. Double choking characteristics of three-dimensional steam ejector with non-equilibrium condensing[J]. Applied Thermal Engineering, 2022, 211: 118446. |
21 | Zheng P, Li B, Qin J X. CFD simulation of two-phase ejector performance influenced by different operation conditions[J]. Energy, 2018, 155: 1129-1145. |
22 | Bolobov V, Martynenko Y V, Voronov V, et al. Improvement of the liquefied natural gas vapor utilization system using a gas ejector[J]. Inventions, 2022, 7(1): 14. |
23 | Е.Я. 索科洛夫, Н.М. 津格尔.喷射器[M]. 黄秋云, 译.北京: 科学出版社, 1977. |
Соколов Е Я, Эингер Н М. Ejector[M]. Huang Q Y, trans. Beijing: Science Press, 1977. | |
24 | Lee W H. A pressure iteration scheme for two-phase flow modeling[R]. Los Alamos: Los Alamos Scientific Laboratory, 1979. |
25 | de Schepper S C K, Heynderickx G J, Marin G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers & Chemical Engineering, 2009, 33(1): 122-132. |
26 | Besagni G, Inzoli F. Computational fluid-dynamics modeling of supersonic ejectors: screening of turbulence modeling approaches[J]. Applied Thermal Engineering, 2017, 117: 122-144. |
27 | Ariafar K, Buttsworth D, Al-Doori G, et al. Effect of mixing on the performance of wet steam ejectors[J]. Energy, 2015, 93: 2030-2041. |
28 | Roache P J. Perspective: a method for uniform reporting of grid refinement studies[J]. Journal of Fluids Engineering, 1994, 116(3): 405-413. |
29 | Chen W X, Chong D T, Yan J J, et al. Numerical optimization on the geometrical factors of natural gas ejectors[J]. International Journal of Thermal Sciences, 2011, 50(8): 1554-1561. |
30 | 沈维道, 童钧耕. 工程热力学[M]. 5版. 北京: 高等教育出版社, 2016. |
Shen W D, Tong J G. Engineering Thermodynamics[M]. 5th ed. Beijing: Higher Education Press, 2016. | |
31 | Croquer S, Poncet S, Aidoun Z. Turbulence modeling of a single-phase R134a supersonic ejector (Part 2): Local flow structure and exergy analysis[J]. International Journal of Refrigeration, 2016, 61: 153-165. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||