化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1908-1919.DOI: 10.11949/0438-1157.20211672

• 热力学 • 上一篇    下一篇

煤制乙炔关键中间体BaC2合成的热力学分析

李淼1,2(),赵虹1(),姜标1,陈思远1,闫龙3   

  1. 1.中国科学院上海高等研究院,上海 201210
    2.中国科学院大学,北京 100049
    3.榆林学院化学与化工学院,陕西 榆林 719000
  • 收稿日期:2021-11-23 修回日期:2022-01-18 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 赵虹
  • 作者简介:李淼(1998—),女,硕士研究生,limiao@sari.ac.cn
  • 基金资助:
    中国科学院洁净能源创新研究院-榆林学院联合基金项目(2021013)

Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene

Miao LI1,2(),Hong ZHAO1(),Biao JIANG1,Siyuan CHEN1,Long YAN3   

  1. 1.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China
  • Received:2021-11-23 Revised:2022-01-18 Online:2022-05-05 Published:2022-05-24
  • Contact: Hong ZHAO

摘要:

煤制电石(CaC2)乙炔工艺在我国煤化工行业中占有重要地位。但其关键中间体CaC2的工业生产过程具有反应温度高、能耗大、CO2排放严重等问题,严重制约了电石及下游相关产业的发展。开发绿色环保的煤制电石替代工艺具有重要意义。本研究提出采用BaC2替代CaC2作为煤制乙炔工艺的关键中间体,从热力学角度分析了BaC2合成反应体系的特点,并在1550℃进行了合成BaC2的实验验证。结果表明,以BaC2替代CaC2为煤制乙炔的关键中间体、通过BaCO3-BaC2-Ba(OH)2-BaCO3的钡循环将碳和二氧化碳转化为乙炔和一氧化碳的新路线,具有反应温度低、零CO2排放、联产CO、固废排放少等优点,可以为现代煤化工的绿色发展提供新的思路。

关键词: 乙炔, 碳化钡, 钡循环, 热力学, 二氧化碳捕集, 化学过程

Abstract:

Coal to calcium carbide (CaC2) acetylene process occupies an important position in the coal chemical industry in China. However, it has been restricted by high power consumption and heavy carbon dioxide emission in the industrial production of its key intermediate calcium carbide. Therefore, it is of great significance to develop a green and environment-friendly alternative process to replace calcium carbide production in coal to acetylene. In this paper, barium carbide was utilized to produce acetylene synthesized from the mixture of barium carbonate with carbon. The characteristics of the BaC2 synthesis reaction system were analyzed from the perspective of thermodynamics, and the experimental verification of the synthesis of BaC2 was carried out at 1550℃. The results showed that a new route for converting carbon and carbon dioxide into acetylene and carbon monoxide via BaCO3-BaC2-Ba(OH)2-BaCO3 barium cycle by replacing CaC2 with BaC2 as the key intermediate of coal-to-acetylene has the advantages of low reaction temperature and zero reaction temperature. The easy regeneration and reuse of barium carbide would highlight barium-based sustainable chemical technologies as promising instruments for total carbon recycling, which provide new methods for the development of the modern coal chemical industry.

Key words: acetylene, barium carbide, barium circulation, thermodynamics, CO2 capture, chemical processes

中图分类号: