1 |
Roeb M, Müller-Steinhagen H. Concentrating on solar electricity and fuels[J]. Science, 2010, 329(5993): 773-774.
|
2 |
Bayon A, de la Calle A, Ghose K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: a review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679.
|
3 |
Pereira C A, Coelho P M, Fernandes J F, et al. Study of an energy mix for the production of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1375-1382.
|
4 |
Yadav D, Banerjee R. A review of solar thermochemical processes[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 497-532.
|
5 |
Zhang B, Zhang S X, Yao R, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080.
|
6 |
Voitic G, Hacker V. Recent advancements in chemical looping water splitting for the production of hydrogen[J]. RSC Advances, 2016, 6(100): 98267-98296.
|
7 |
Luo M, Yi Y, Wang S Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214.
|
8 |
Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93.
|
9 |
Agrafiotis C, Roeb M, Sattler C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 254-285.
|
10 |
Krenzke P T, Fosheim J R, Davidson J H. Solar fuels via chemical-looping reforming[J]. Solar Energy, 2017, 156: 48-72.
|
11 |
Furler P, Scheffe J R, Steinfeld A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ. Sci., 2012, 5(3): 6098-6103.
|
12 |
Furler P, Scheffe J, Gorbar M, et al. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system[J]. Energy & Fuels, 2012, 26(11): 7051-7059.
|
13 |
Haeussler A, Abanades S, Costa Oliveira F A, et al. Solar redox cycling of ceria structures based on fiber boards, foams, and biomimetic cork-derived ecoceramics for two-step thermochemical H2O and CO2 splitting[J]. Energy & Fuels, 2020, 34(7): 9037-9049.
|
14 |
Venstrom L J, Petkovich N, Rudisill S, et al. The effects of morphology on the oxidation of ceria by water and carbon dioxide[J]. Journal of Solar Energy Engineering, 2012, 134(1): 011005.
|
15 |
Shen Y, Zhao K, He F, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1168-1176.
|
16 |
Panlener R J, Blumenthal R N, Garnier J E. A thermodynamic study of nonstoichiometric cerium dioxide[J]. Journal of Physics and Chemistry of Solids, 1975, 36(11): 1213-1222.
|
17 |
Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129(1/2/3/4): 63-94.
|
18 |
Chueh W C, Haile S M. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1923): 3269-3294.
|
19 |
Zhu X, Wang H, Wei Y G, et al. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier[J]. Journal of Rare Earths, 2010, 28(6): 907-913.
|
20 |
Hao Y, Yang C K, Haile S M. Ceria-zirconia solid solutions (Ce1- x Zr x O2- δ, x ≤ 0.2) for solar thermochemical water splitting: a thermodynamic study[J]. Chemistry of Materials, 2014, 26(20): 6073-6082.
|
21 |
Venstrom L J, de Smith R M, Hao Y, et al. Efficient splitting of CO2 in an isothermal redox cycle based on ceria[J]. Energy & Fuels, 2014, 28(4): 2732-2742.
|
22 |
Bulfin B, Lowe A J, Keogh K A, et al. Analytical model of CeO2 oxidation and reduction[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24129-24137.
|
23 |
Sheu E J, Mokheimer E M A, Ghoniem A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955.
|
24 |
Lyu Y J, Zhu L Y, Agrafiotis C, et al. Solar fuels production: two-step thermochemical cycles with cerium-based oxides[J]. Progress in Energy and Combustion Science, 2019, 75: 100785.
|
25 |
Furler P, Steinfeld A. Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical Engineering Science, 2015, 137: 373-383.
|
26 |
Patil V R, Kiener F, Grylka A, et al. Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000℃[J]. Solar Energy, 2021, 214: 72-85.
|
27 |
Zoller S, Koepf E, Roos P, et al. Heat transfer model of a 50 kW solar receiver-reactor for thermochemical redox cycling using cerium dioxide[J]. Journal of Solar Energy Engineering, 2019, 141(2): 021014.
|
28 |
Wang P, Vafai K, Liu D Y. Analysis of radiative effect under local thermal non-equilibrium conditions in porous media—application to a solar air receiver[J]. Numerical Heat Transfer, Part A: Applications, 2014, 65(10): 931-948.
|
29 |
Zhao Z L, Uddi M, Tsvetkov N, et al. Redox kinetics study of fuel reduced ceria for chemical-looping water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16271-16289.
|
30 |
Ackermann S, Scheffe J R, Steinfeld A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles[J]. The Journal of Physical Chemistry C, 2014, 118(10): 5216-5225.
|
31 |
Wang P, Vafai K, Liu D Y, et al. Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed[J]. International Journal of Heat and Mass Transfer, 2015, 80: 789-801.
|