1 |
Villagrán O M C, Benito J G, Uñac R O, et al. Towards a one parameter equation for a silo discharging model with inclined outlets[J]. Powder Technology, 2018, 336: 265-272.
|
2 |
Mathews J C, Wu W. Model tests of silo discharge in a geotechnical centrifuge[J]. Powder Technology, 2016, 293: 3-14.
|
3 |
卫思辰, 贾海兵, 范怡平, 等. 引入大颗粒助剂对径向移动床流动特性的影响[J]. 化工学报, 2016, 67(8): 3313-3320.
|
|
Wei S C, Jia H B, Fan Y P, et al. Effect of introducing large additive particles on flow characteristics in radial flow moving bed[J]. CIESC Journal, 2016, 67(8): 3313-3320.
|
4 |
Tu P, Vimonsatit V, Li J. Silo quake response spectrum of iron ore train load out bin[J]. Advanced Powder Technology, 2018, 29(11): 2775-2784.
|
5 |
Chen Q, Li R, Xiu W Z, et al. Measurement of granular temperature and velocity profile of granular flow in silos[J]. Powder Technology, 2021, 392: 123-129.
|
6 |
Sielamowicz I, Błoñski S, Kowalewski T A. Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, part 2 of 3-converging hoppers[J]. Chemical Engineering Science, 2006, 61(16): 5307-5317.
|
7 |
Wang Q, Chen Q, Li R, et al. Shape of free-fall arch in quasi-2D silo[J]. Particuology, 2021, 55: 62-69.
|
8 |
Janda A, Zuriguel I, Maza D. Flow rate of particles through apertures obtained from self-similar density and velocity profiles[J]. Physical Review Letters, 2012, 108(24): 248001.
|
9 |
Wang R, Li R, Wang S S, et al. End wall effect on particle motion in a chute flow[J]. Particuology, 2021, 54: 102-108.
|
10 |
Yang H, Zhu Y H, Li R, et al. Kinetic granular temperature and its measurement using speckle visibility spectroscopy[J]. Particuology, 2020, 48: 160-169.
|
11 |
Song J, Yang H, Li R, et al. Improved PTV measurement based on Voronoi matching used in hopper flow[J]. Powder Technology, 2019, 355: 172-182.
|
12 |
Gentzler M, Tardos G I. Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging[J]. Chemical Engineering Science, 2009, 64(22): 4463-4469.
|
13 |
Guillard F, Marks B, Einav I. Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow[J]. Scientific Reports, 2017, 7(1):8155.
|
14 |
Zhu Y H, Yang H, Li R, et al. Wireless detector for translational and rotational motion of spherical-particle flow[J]. Powder Technology, 2020, 360: 882-889.
|
15 |
赵颖, 朱兴望, 曲世祥, 等. 球形燃料元件累积旋转角度和角速度问题研究[J]. 核技术, 2016, 39(3): 76-82.
|
|
Zhao Y, Zhu X W, Qu S X, et al. Rotation angles and angular velocities study of pebble-shaped fuel element based on a detection system[J]. Nuclear Techniques, 2016, 39(3): 76-82.
|
16 |
Balevičius R, Kačianauskas R, Mróz Z, et al. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes[J]. Advanced Powder Technology, 2011, 22(2): 226-235.
|
17 |
刘义伦, 刘思琪, 赵先琼, 等. 偏心楔形喂料斗卸料过程中颗粒流动特性[J]. 化工学报, 2018, 69(4): 1469-1475.
|
|
Liu Y L, Liu S Q, Zhao X Q, et al. Flow characteristics of granule discharged from eccentric wedge-shaped feed hopper[J]. CIESC Journal, 2018, 69(4): 1469-1475.
|
18 |
Weinhart T, Labra C, Luding S, et al. Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow[J]. Powder Technology, 2016, 293: 138-148.
|
19 |
Feng Y, Yuan Z R. Discrete element method modeling of granular flow characteristics transition in mixed flow[J]. Computational Particle Mechanics, 2021, 8(1): 21-34.
|
20 |
Yu Y W, Saxén H. Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres[J]. Advanced Powder Technology, 2011, 22(3): 324-331.
|
21 |
Washino K, Chan E L, Miyazaki K, et al. Time step criteria in DEM simulation of wet particles in viscosity dominant systems[J]. Powder Technology, 2016, 302: 100-107.
|
22 |
刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253.
|
|
Liu F Y, Zhang J, Li B, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 247-253.
|
23 |
Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method[J]. Powder Technology, 2013, 235: 614-627.
|
24 |
Simsek E. Experimental investigation and numerical simulation by means of the discrete element method[D]. Germany: Bochum University, 2011.
|
25 |
Tripathi A, Kumar V, Agarwal A, et al. Quantitative DEM simulation of pellet and sinter particles using rolling friction estimated from image analysis[J]. Powder Technology, 2021, 380: 288-302.
|
26 |
Mindlin R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268.
|
27 |
Ai J, Chen J F, Rotter J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282.
|
28 |
Jenike A W. Gravity Flow of Bulk Solids[M]. Utah: Utah State University Press, 1961: 322.
|
29 |
Esteves P J, de Macêdo M C S, Souza R M, et al. Effect of ball rotation speed on wear coefficient and particle behavior in micro-abrasive wear tests[J]. Wear, 2019, 426/427: 137-141.
|
30 |
Zhang S, Yang G H, Lin P, et al. Inclined granular flow in a narrow chute[J]. The European Physical Journal. E, Soft Matter, 2019, 42(4): 40.
|
31 |
Han Y L, Jia F G, Li G R, et al. Numerical analysis of flow pattern transition in a conical silo with ellipsoid particles[J]. Advanced Powder Technology, 2019, 30(9): 1870-1881.
|
32 |
Zhang Y X, Jia F G, Zeng Y, et al. DEM study in the critical height of flow mechanism transition in a conical silo[J]. Powder Technology, 2018, 331: 98-106.
|