化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4472-4483.DOI: 10.11949/0438-1157.20220696
收稿日期:
2022-05-16
修回日期:
2022-07-08
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
梁文俊
作者简介:
石秀娟(1991—),女,博士研究生,shixiujuan@emails.bjut.edu.cn
基金资助:
Xiujuan SHI(), Wenjun LIANG(), Guobin YIN, Jinzhu WANG
Received:
2022-05-16
Revised:
2022-07-08
Online:
2022-10-05
Published:
2022-11-02
Contact:
Wenjun LIANG
摘要:
以氯代挥发性有机物(CVOCs)中的典型代表氯苯为研究对象,分别采用硝酸锰(MN)和乙酸锰(MA)为前体,通过浸渍法制备Mn基催化剂,考察了低温等离子体协同Mn基催化剂降解氯苯性能以及抑制反应副产物臭氧生成的影响。研究发现对于不同反应系统,提升电压可以提高氯苯降解效率;催化剂引入能够大幅度提高氯苯降解性能,与MnO x (MN)/γ-Al2O3相比,MnO x (MA)/γ-Al2O3引入对氯苯降解效果更好,对臭氧生成的抑制性能更高。利用N2吸附-脱附、扫描电镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和X射线光电子能谱(XPS)等手段对反应前后催化剂进行表征分析,发现放电并未对催化剂的孔径及晶相结构产生影响;通过无机氯选择性和尾气质谱结果分析氯苯降解过程中氯元素变化;与MnO x (MN)/γ-Al2O3催化剂相比,MnO x (MA)/γ-Al2O3催化剂的比表面积相对较大,活性组分分散性更高、更均匀,从而导致反应系统内更多的臭氧在催化剂表面分解为活性氧原子,提高了氯苯的降解性能并抑制了反应系统内臭氧的生成。
中图分类号:
石秀娟, 梁文俊, 尹国彬, 王金柱. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483.
Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jinzhu WANG. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst[J]. CIESC Journal, 2022, 73(10): 4472-4483.
催化剂 | 比表面积SBET/(m2/g) | 总孔容Vp/(cm3/g) | 平均孔径dp/nm |
---|---|---|---|
γ-Al2O3(反应前) | 257 | 0.48 | 7.55 |
γ-Al2O3(反应后) | 265 | 0.49 | 7.33 |
MnO x (MN)/γ-Al2O3(反应前) | 236 | 0.45 | 7.79 |
MnO x (MN)/γ-Al2O3(反应后) | 240 | 0.47 | 7.64 |
MnO x (MA)/γ-Al2O3(反应前) | 238 | 0.45 | 7.61 |
MnO x (MA)/γ-Al2O3(反应后) | 249 | 0.46 | 7.39 |
表1 不同催化剂反应前后的比表面积、孔容和孔径
Table 1 Specific surface area, pore volume and pore diameter of different catalysts before and after reaction
催化剂 | 比表面积SBET/(m2/g) | 总孔容Vp/(cm3/g) | 平均孔径dp/nm |
---|---|---|---|
γ-Al2O3(反应前) | 257 | 0.48 | 7.55 |
γ-Al2O3(反应后) | 265 | 0.49 | 7.33 |
MnO x (MN)/γ-Al2O3(反应前) | 236 | 0.45 | 7.79 |
MnO x (MN)/γ-Al2O3(反应后) | 240 | 0.47 | 7.64 |
MnO x (MA)/γ-Al2O3(反应前) | 238 | 0.45 | 7.61 |
MnO x (MA)/γ-Al2O3(反应后) | 249 | 0.46 | 7.39 |
催化剂 | 结合能/eV | Mn4+/Mn3+ | 结合能 /eV | Olatt/Oads | ||
---|---|---|---|---|---|---|
Mn4+ | Mn3+ | Olatt | Oads | |||
MnO x (MN)/γ-Al2O3 | 643.7 | 641.7 | 0.77 | 529.2 | 530.6 | 2.56 |
MnO x (MA)/γ-Al2O3 | 643.7 | 641.7 | 0.88 | 529.3 | 530.8 | 3.91 |
表2 不同前体制备的新鲜Mn基催化剂XPS表征结果
Table 2 XPS characterization results of fresh Mn based catalysts prepared from different precursors
催化剂 | 结合能/eV | Mn4+/Mn3+ | 结合能 /eV | Olatt/Oads | ||
---|---|---|---|---|---|---|
Mn4+ | Mn3+ | Olatt | Oads | |||
MnO x (MN)/γ-Al2O3 | 643.7 | 641.7 | 0.77 | 529.2 | 530.6 | 2.56 |
MnO x (MA)/γ-Al2O3 | 643.7 | 641.7 | 0.88 | 529.3 | 530.8 | 3.91 |
图9 不同电压条件下不同催化剂对臭氧浓度以及反应器表观温度的影响
Fig.9 Effects of different catalysts on ozone concentration and reactor apparent temperature under different voltage conditions
1 | Lyu X P, Guo H, Wang Y, et al. Hazardous volatile organic compounds in ambient air of China[J]. Chemosphere, 2020, 246: 125731. |
2 | Liu B Y, Ji J, Zhang B G, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review[J]. Journal of Hazardous Materials, 2022, 422: 126847. |
3 | Chang T, Ma C L, Shen Z X, et al. Mn-based catalysts for post non-thermal plasma catalytic abatement of VOCs: a review on experiments, simulations and modeling[J]. Plasma Chemistry and Plasma Processing, 2021, 41(5): 1239-1278. |
4 | Lin F W, Zhang Z M, Li N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal, 2021, 404: 126534. |
5 | Zhang S H, You J P, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: a review[J]. Chemical Engineering Journal, 2018, 334: 2625-2637. |
6 | Qian Y, Yin D Q, Li Y, et al. Effects of four chlorobenzenes on serum sex steroids and hepatic microsome enzyme activities in crucian carp, Carassius auratus [J]. Chemosphere, 2004, 57(2): 127-133. |
7 | Hu Y X, Zhou Y, Yang Z, et al. Adsorption kinetics of gaseous chlorobenzene on electrospun lignin-based nanofiber[J]. Journal of Materials Science, 2022, 57(2): 1536-1544. |
8 | Liang W J, Zhu Y X, Ren S D, et al. Catalytic combustion of chlorobenzene at low temperature over Ru-Ce/TiO2: high activity and high selectivity[J]. Applied Catalysis A: General, 2021, 623: 118257. |
9 | Zhang M J, Lu J, Zhu C Z, et al. Photocatalytic degradation of gaseous benzene with Bi2WO6/palygorskite composite catalyst[J]. Solid State Sciences, 2019, 90: 76-85. |
10 | Li B, Yuan D C, Ma L P, et al. Efficient combustion of chlorinated volatile organic compounds driven by natural sunlight[J]. Science of the Total Environment, 2020, 749: 141595. |
11 | Deng W, Tang Q X, Huang S S, et al. Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides[J]. Applied Catalysis B: Environmental, 2020, 278: 119336. |
12 | Li S J, Yu X, Dang X Q, et al. Non-thermal plasma coupled with MO x /γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: analysis of byproducts and the reaction mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. |
13 | Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5-WO3/TiO2 catalyst: the effect of heavy metal Pb[J]. Journal of Hazardous Materials, 2020, 387: 121705. |
14 | 姚水良, 章旭明, 陆豪. 低温等离子体净化挥发性有机物关键技术[J]. 高电压技术, 2020, 46(1): 342-350. |
Yao S L, Zhang X M, Lu H. Key technologies of purification for volatile-organic-compounds using non-thermal plasma[J]. High Voltage Engineering, 2020, 46(1): 342-350. | |
15 | Han F L, Li M Y, Zhong H R, et al. Product analysis and mechanism of toluene degradation by low temperature plasma with single dielectric barrier discharge[J]. Journal of Saudi Chemical Society, 2020, 24(9): 673-682. |
16 | Chang Z S, Wang C, Zhang G J. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers, 2020, 17(4): 1900131. |
17 | Nguyen V T, Nguyen D B, Heo I, et al. Efficient degradation of styrene in a nonthermal plasma–catalytic system over Pd/ZSM-5 catalyst[J]. Plasma Chemistry and Plasma Processing, 2020, 40(5): 1207-1220. |
18 | 夏诗杨, 米俊锋, 杜胜男, 等. 低温等离子体处理挥发性有机物的研究进展[J]. 应用化工, 2021, 50(4): 1130-1135. |
Xia S Y, Mi J F, Du S N, et al. Research progress of non-thermal plasma treatment of volatile organic compounds[J]. Applied Chemical Industry, 2021, 50(4): 1130-1135. | |
19 | 赵亚飞, 叶凯, 庄烨, 等. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184. |
Zhao Y F, Ye K, Zhuang Y, et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. | |
20 | Yao X H, Zhang J, Liang X Y, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere, 2019, 230: 479-487. |
21 | Chang T, Shen Z X, Huang Y, et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal, 2018, 348: 15-25. |
22 | Sivachandiran L, Thevenet F, Rousseau A. Isopropanol removal using Mn x O y packed bed non-thermal plasma reactor: comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270: 327-335. |
23 | Liu Y, Lian L P, Zhao W X, et al. DBD coupled with MnO x /γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 034016. |
24 | Rezaei E, Soltan J. Low temperature oxidation of toluene by ozone over MnO x /γ-alumina and MnO x /MCM-41 catalysts[J]. Chemical Engineering Journal, 2012, 198/199: 482-490. |
25 | 张硕, 梁吉艳, 沈欣军, 等. DDBD协同MnO x 催化氧化降解低浓度甲苯[J]. 环境工程, 2019, 37(10): 148-152. |
Zhang S, Liang J Y, Shen X J, et al. Catalytic oxidation of dilute toluene using DDBD-assisted MnO x [J]. Environmental Engineering, 2019, 37(10): 148-152. | |
26 | Wang L, He H, Zhang C B, et al. Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene[J]. Chemical Engineering Journal, 2016, 288: 406-413. |
27 | Jose J, Philip L. Degradation of chlorobenzene in aqueous solution by pulsed power plasma: mechanism and effect of operational parameters[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103476. |
28 | He F, Jiao Y M, Wu L Y, et al. Enhancement mechanism of Sn on the catalytic performance of Cu/KIT-6 during the catalytic combustion of chlorobenzene[J]. Catalysis Science & Technology, 2019, 9(21): 6114-6123. |
29 | 梁文俊, 郭书清, 武红梅, 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7): 2755-2762. |
Liang W J, Guo S Q, Wu H M, et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. CIESC Journal, 2017, 68(7): 2755-2762. | |
30 | Vandenbroucke A M, Morent R, de Geyter N, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. |
31 | Kim H H, Ogata A, Futamura S. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 984-995. |
32 | Wang T, Chen S, Wang H Q, et al. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017, 38(5): 793-803. |
33 | Huang H, Chen C W, Yang R, et al. Remarkable promotion effect of lauric acid on Mn-MIL-100 for non-thermal plasma-catalytic decomposition of toluene[J]. Applied Surface Science, 2020, 503: 144290. |
34 | Guo F, Xu J Q, Chu W. CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma[J]. Catalysis Today, 2015, 256: 124-129. |
35 | Liang C F, Hu X, Wei T, et al. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: impacts of oxygen vacancies on catalytic activity[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8197-8213. |
36 | 叶凯, 刘香华, 姜月, 等. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
Ye K, Liu X H, Jiang Y, et al. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715. | |
37 | 朱丽华, 徐锋, 高宏亮, 等. 等离子体改性对CuO/ZrO2催化乏风瓦斯燃烧的影响[J]. 黑龙江科技大学学报, 2017, 27(4): 443-447. |
Zhu L H, Xu F, Gao H L, et al. Effect of plasma treatment on performance of CuO/ZrO2 catalyst in combustion of ventilation air methane[J]. Journal of Heilongjiang University of Science and Technology, 2017, 27(4): 443-447. | |
38 | Zhang H, Chu W, Xu H Y, et al. Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation[J]. Fuel, 2010, 89(10): 3127-3131. |
39 | He D D, Hao H S, Chen D K, et al. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catalysis Today, 2017, 281: 559-565. |
40 | Tang X F, Li Y G, Huang X M, et al. MnO x -CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. |
41 | Zhang C B, Liu F D, Zhai Y P, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie, 2012, 124(38): 9766-9770. |
42 | Maciuca A, Batiot-Dupeyrat C, Tatibouët J M. Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air[J]. Applied Catalysis B: Environmental, 2012, 125: 432-438. |
43 | Wang M X, Zhang P Y, Li J G, et al. The effects of Mn loading on the structure and ozone decomposition activity of MnO x supported on activated carbon[J]. Chinese Journal of Catalysis, 2014, 35(3): 335-341. |
44 | 梁文俊, 孙慧频, 朱玉雪, 等. 低温等离子体协同催化降解甲苯生成副产物臭氧的影响因素[J]. 化工进展, 2020, 39(7): 2893-2899. |
Liang W J, Sun H P, Zhu Y X, et al. Ozone formation in toluene degradation by plasma assisted catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2893-2899. |
[1] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[2] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[3] | 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO2)2/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201. |
[4] | 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742. |
[5] | 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84. |
[6] | 王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265. |
[7] | 黄莉婷, 韩昫身, 金艳, 马强, 于建国. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9): 4881-4891. |
[8] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[9] | 宋奕慧, 雷志轶, 范国利, 杨兰, 林彦军, 李峰. 基于LiAl-LDH/C杂化前体制备高比表面固体碱催化剂及其催化性能研究[J]. 化工学报, 2021, 72(6): 3084-3094. |
[10] | 张正义,张千,楼紫阳,刘伟,朱宇楠,袁春波,于潇,赵天涛. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报, 2021, 72(10): 5362-5371. |
[11] | 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. |
[12] | 高文强, 焦纬洲, 刘有智. 超重力强化O3/H2O2氧化甲苯合成苯甲酸的研究[J]. 化工学报, 2020, 71(3): 1045-1052. |
[13] | 王保伟, 苏会娟, 姚淑美. O2介质阻挡放电微等离子体制备O3[J]. 化工学报, 2020, 71(2): 746-754. |
[14] | 赵京, 张玉锋, 魏小林, 李腾, 宾峰. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120. |
[15] | 冯可, 王玥, 李金华, 楚学影, 胡思怡, 林志远. Cd2+前体反应时间对CdSe量子棒长径比的调控及其光学特性研究[J]. 化工学报, 2019, 70(7): 2795-2801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||