化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3585-3593.DOI: 10.11949/0438-1157.20200261
收稿日期:
2020-03-16
修回日期:
2020-06-02
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
梁文俊
作者简介:
梁文俊(1978—),男,教授, 基金资助:
Wenjun LIANG(),Yuxue ZHU,Xiujuan SHI,Huipin SUN,Sida REN
Received:
2020-03-16
Revised:
2020-06-02
Online:
2020-08-05
Published:
2020-08-05
Contact:
Wenjun LIANG
摘要:
采用等体积浸渍法制备了单贵金属Ru/TiO2和双金属Ru-Ce/TiO2系列催化剂,测试了其对氯苯的催化活性,并通过N2吸脱附、扫描电镜(SEM)、程序升温还原(H2-TPR)进行表征,旨在考察稀土元素Ce掺杂对Ru/TiO2催化氯苯性能的影响。结果表明,Ce的引入可使其在降低贵金属含量的基础上仍保持高的催化效率,且极大地提高了低温催化活性。0.4%Ru-1.0%Ce/TiO2与0.4%Ru/TiO2相比,其T10和T90分别降低了50℃和60℃。H2-TPR表明引入Ce为催化剂提供了更多的表面氧空位,形成Ru-O-Ce增强了其氧化还原能力。掺杂Ce未改变Ru/TiO2催化剂的结构形貌,仍保持介孔结构,但若负载量过多,会堵塞部分孔道,阻碍污染物吸附及反应,降低催化性能。
中图分类号:
梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593.
Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts[J]. CIESC Journal, 2020, 71(8): 3585-3593.
样品 | 转化率 | ||||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | 100% | |
0.4%Ru/TiO2 | DCB | DCB、TCB | DCB、PCB、BHC | DCB | — |
0.4%Ru-1.0%Ce/TiO2 | DCB | DCB | DCB | 苯 | — |
表1 不同氯苯转化率下的有机副产物
Table 1 Organic by-products at different conversion of chlorobenzene
样品 | 转化率 | ||||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | 100% | |
0.4%Ru/TiO2 | DCB | DCB、TCB | DCB、PCB、BHC | DCB | — |
0.4%Ru-1.0%Ce/TiO2 | DCB | DCB | DCB | 苯 | — |
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiO2 | 71.72 | 0.39 | 12.6 |
1.0%Ce/TiO2 | 70.02 | 0.37 | 15.8 |
0.4%Ru/TiO2 | 70.73 | 0.37 | 11.4 |
0.4%Ru-0.5%Ce/TiO2 | 69.30 | 0.38 | 14.8 |
0.4%Ru-1.0%Ce/TiO2 | 68.92 | 0.37 | 14.2 |
0.4%Ru-4.0%Ce/TiO2 | 67.42 | 0.36 | 14.4 |
表2 催化剂比表面积及孔结构数据
Table 2 Specific surface area and pore structure of catalysts
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiO2 | 71.72 | 0.39 | 12.6 |
1.0%Ce/TiO2 | 70.02 | 0.37 | 15.8 |
0.4%Ru/TiO2 | 70.73 | 0.37 | 11.4 |
0.4%Ru-0.5%Ce/TiO2 | 69.30 | 0.38 | 14.8 |
0.4%Ru-1.0%Ce/TiO2 | 68.92 | 0.37 | 14.2 |
0.4%Ru-4.0%Ce/TiO2 | 67.42 | 0.36 | 14.4 |
1 | 杨一鸣, 崔积山, 童莉, 等. 美国VOCs定义演变历程对我国VOCs环境管控的启示[J]. 环境科学研究, 2017, 30(3): 368-379. |
Yang Y M, Cui J S, Tong L, et al. Evolution of the definition of volatile organic compounds in the United States and its implications for China[J]. Research of Environmental Sciences, 2017, 30(3): 368-379. | |
2 | Dai C H, Zhou Y Y, Peng H, et al. Current progress in remediation of chlorinated volatile organic compounds: a review[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 106-119. |
3 | 阚家伟, 李兵, 李林, 等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展, 2016, 35(2): 499-505. |
Kan J W, Li B, Li L, et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 499-505. | |
4 | 于旭霞, 冯俊小. 催化燃烧治理氯苯类挥发性有机化合物最新进展[J]. 化工进展, 2016, 35(5): 1514-1518. |
Yu X X, Feng J X. Recent process in the removal of chlorobenzenes volatile organic compounds by catalytic combustion[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1514-1518. | |
5 | Dai Q G, Bai S X, Wang Z, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts[J]. Applied Catalysis B: Environmental, 2012, 126: 64-75. |
6 | Huang B B, Lei C, Wei C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
7 | 陈立. Ru基催化剂对氯代挥发性有机物CVOCs的催化氧化研究[D]. 贵阳: 贵州大学, 2018. |
Chen L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018. | |
8 | Du C C, Lu S Y, Wang Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J].Chemical Engineering Journal, 2018, 334: 519-544. |
9 | Shi W B, Liu X L, Zeng J L, et al. Gas-solid catalytic reactions over ruthenium-based catalysts[J].Chinese Journal of Catalysis, 2016, 37(8): 1181-1192. |
10 | 梁文俊, 杜晓燕, 任思达, 等. Pd/Ce基催化剂催化氧化氯苯的性能[J]. 化工进展, 2019, 38 (10): 4574-4581. |
Liang W J, Du X Y, Ren S D, et al. Catalytic performance of Pd/Ce-based catalyst for oxidation of chlorobenzene[J]. Chemical Industry and Engineering Progress, 2019, 38 (10): 4574-4581. | |
11 | Lu L L, Wang C, Wang M, et al. Catalytic oxidation of trichloroethylene over RuO2 supported on ceria-zirconia mixed oxide[J].Chemical Research in Chinese Universities, 2019, 35(1): 71-78. |
12 | Chen Q Y, Li N, Luo M F, et al. Catalytic oxidation of dichloromethane over Pt/CeO2-Al2O3 catalysts [J].Applied Catalysis B: Environmental, 2012, 127: 159-166. |
13 | Liu X L, Chen L, Zhu T Y, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. |
14 | Wang J, Liu X L, Zeng J L, et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts[J]. Catalysis Communications, 2016, 76: 13-18. |
15 | 蒋熙云, 杨军, 刘雨溪, 等. 含氯挥发性有机物的催化氧化研究进展[J]. 工业催化, 2019, 27(8): 23-35. |
Jiang X Y, Yang J, Liu Y X, et al. Research advancements on catalytic oxidation of chlorinated volatile organic compounds[J]. Industrial Catalysis, 2019, 27(8): 23-35. | |
16 | Liu X L, Zeng J L, Shi W B, et al. Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism[J]. Catalysis Science & Technology, 2017, 7(1): 213-221. |
17 | Dai Q G, Wu J Y, Deng W, et al. Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: from effects of H2O to distribution of chlorinated by-products[J]. Applied Catalysis B: Environmental, 2019, 249: 9-18. |
18 | Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment[J]. Chemical Reviews, 2013, 113(6): 3949-3985. |
19 | 袁堃, 张亚文. 纳米氧化铈的缺陷化学及其在多相催化中作用的研究进展[J]. 中国稀土学报, 2020, (3): 326-344. |
Yuan K, Zhang Y W. The defect chemistry of ceria nanostructures and their applications in heterogeneous catalysis[J]. Journal of the Chinese Rare Earth Society, 2020, (3): 326-344 | |
20 | Hu Z, Wang Z, Guo Y, et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environmental Science & Technology, 2018, 52: 9531-9541. |
21 | 梁文俊, 任思达, 王昭艺, 等. Pt/Pt-Ce/γ-Al2O3催化氧化甲苯研究[J]. 工业催化, 2019, 27(11): 25-29. |
Liang W J, Ren S D, Wang Z Y, et al. Combustion of toluene over Pt/Pt-Ce/γ-Al2O3 catalysts[J]. Industrial Catalysis, 2019, 27(11): 25-29. | |
22 | Dai Q G, Bai S X, Wang J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2013, 142/143: 222-233. |
23 | Wang J, Zhao H N, Liu X L, et al. Study on the catalytic properties of Ru/TiO2 catalysts for the catalytic oxidation of (chloro)‑aromatics[J]. Catalysis Letters, 2019, 149: 2004-2014. |
24 | Lao Y J, Zhu N X, Jiang X X, et al. Effect of Ru on the activity of Co3O4 catalysts for chlorinated aromatics oxidation[J]. Catalysis Science & Technology, 2018, 8: 4797-4811. |
25 | Dai Q G, Bai S X, Wang X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study[J]. Applied Catalysis B: Environmental, 2013, 129: 580-588. |
26 | Kan J W, Deng L, Li B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A: General, 2017, 530: 21-29. |
27 | 王争一. Ru/Ce-Al2O3催化剂催化燃烧氯苯和二氯甲烷的研究[D]. 上海: 华东理工大学, 2012. |
Wang Z Y. Studies on catalytic combustion of chlorobenzene and dichloromethane over Ru/Ce-Al2O3 catalysts[D]. Shanghai: East China University of Science and Technology, 2012. | |
28 | Wang F, He S, Chen H, et al. Active site-dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. Journal of the American Chemical Society, 2016, 138(19): 6298-6305. |
29 | Liang W J, Du X Y, Zhu Y X, et al. Catalytic oxidation of chlorobenzene over Pd-TiO2/Pd-Ce/TiO2 catalysts[J]. Catalyst, 2020, 10(3): 347. |
30 | 任思达, 梁文俊, 王昭艺, 等. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 2019, 39(7): 2774-2780. |
Ren S D, Liang W J, Wang Z Y, et al. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 2019, 39(7): 2774-2780. | |
31 | Li W, Liu P C, Niu R Y, et al. Influence of CeO2 supports prepared with different precipitants over Ru/CeO2 catalysts for ammonia synthesis[J]. Solid State Sciences, 2020, 99: 105983. |
32 | 王岩. 氧化铈负载金属模型催化剂的表面科学研究[D]. 合肥: 中国科学技术大学, 2018. |
Wang Y. Surface science study of ceria-supported metal model catalysts[D]. Hefei: University of Science and Technology of China, 2018. | |
33 | Over H, Knapp M, Lundgren E, et al. Visualization of atomic processes on ruthenium dioxideusing scanning tunneling microscopy[J]. ChemPhysChem, 2004, 5: 167-174. |
34 | Okal J, Zawadzki M, Kepinski L, et al. The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts[J]. Applied Catalysis A: General, 2007, 319: 202-209. |
35 | Wang Y, Deng W, Wang Y F, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70. |
36 | 喻业茂. 催化剂颗粒内部毛细冷凝作用下的化学反应滞后研究[D]. 上海: 华东理工大学, 2012. |
Yu Y M. Chemical reaction hysteresis induced by capillary condensation within the catalyst pellets[D]. Shanghai: East China University of Science and Technology, 2012. | |
37 | Thommes M, Katsumi K, Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
38 | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 2版. 北京: 化学工业出版社, 2006: 57-81. |
Kondo S, Ishikawa T, Abe I. Adsorption Science[M]. Li G X, trans. 2nd ed. Beijing: Chemical Industry Press, 2006: 57-81. | |
39 | Lamonier J F, Nguyen T B, Franco M, et al. Influence of the meso-macroporous ZrO2-TiO2 calcination temperature on the pre-reduced Pd/ZrO2-TiO2 (1/1) performances in chlorobenzene total oxidation[J]. Catalysis Today, 2011, 164(1): 566-570. |
40 | Topka P, Delaigle R, Kaluza L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene [J]. Catalysis Today, 2015, 253: 172-177. |
41 | 司马晋强. 铈基氧化物表面氧空位的调控及其柴油机碳烟氧化催化性能研究[D]. 天津: 天津大学, 2017. |
Sima J Q. Regulation of ceria based oxides surface oxygen vacancies and the catalytic performance for diesel soot oxidation[D]. Tianjin: Tianjin University, 2017. | |
42 | Nakaji Y, Kobayashi D, Nakagawa Y, et al. Mechanism of formation of highly dispersed metallic ruthenium particles on ceria support by heating and reduction[J]. The Journal of Physical Chemistry, 2019, 123 (34): 20817-20828. |
43 | Zhang N, Du Y Y, Yin M, et al. Facile synthesis of supported RuO2‧xH2O nanoparticles on Co-Al hydrotalcite for the catalytic oxidation of alcohol: effect of temperature pretreatment[J]. RSC Advances, 2016, 6: 49588-49596. |
44 | 王健. 负载型钌催化剂对VOCs的催化氧化研究[D]. 北京: 中国科学院大学, 2016. |
Wang J. Study on supported ruthenium catalysts for the catalytic oxidation of VOCs[D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
45 | Zeng M, Li Y Z, Mao M Y, et al. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites[J]. ACS Catalysis, 2015, 5(6): 3278-3286. |
46 | Hao H, Dai Q G, Wang X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158/159: 96-105. |
47 | 刘贵. 复合金属氧化物催化剂的制备及催化氧化性能的研究[D]. 南京: 南京师范大学, 2018. |
Liu G. Study on preparation and catalytic oxidation of composite metal oxide catalysts[D]. Nanjing: Nanjing Normal University, 2018. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[3] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[4] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[5] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[6] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[7] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[8] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[9] | 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
[10] | 王保文, 张港, 刘同庆, 李炜光, 王梦家, 林德顺, 马晶晶. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426. |
[11] | 石秀娟, 梁文俊, 尹国彬, 王金柱. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483. |
[12] | 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380. |
[13] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[14] | 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
[15] | 杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||