化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3706-3715.doi: 10.11949/0438-1157.20201914

• 催化、动力学与反应器 • 上一篇    下一篇

低温等离子体协同CeO2/13X催化降解甲苯

叶凯1(),刘香华2(),姜月2,于颖2,赵亚飞1,庄烨1,郑进保2(),陈秉辉2   

  1. 1.福建龙净环保股份有限公司,福建 龙岩 364000
    2.厦门大学化学化工学院,福建 厦门 361005
  • 收稿日期:2020-12-25 修回日期:2021-03-31 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 郑进保 E-mail:yekai@longking.com.cn;32420180155412@stu.xmu.edu.cn;jbzheng@xmu.edu.cn
  • 作者简介:叶凯(1988—),男,硕士,yekai@longking.com.cn|刘香华(1989—),女,博士研究生,32420180155412@stu.xmu.edu.cn

Combing low-temperature plasma with CeO2/13X for toluene degradation

YE Kai1(),LIU Xianghua2(),JIANG Yue2,YU Ying2,ZHAO Yafei1,ZHUANG Ye1,ZHENG Jinbao2(),CHEN Binghui2   

  1. 1.Fujian Longking Company Limited, Longyan 364000, Fujian, China
    2.College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2020-12-25 Revised:2021-03-31 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHENG Jinbao E-mail:yekai@longking.com.cn;32420180155412@stu.xmu.edu.cn;jbzheng@xmu.edu.cn

摘要:

低温等离子体协同催化剂技术(NTP-CAT)由于操作方便、能耗低等特点,特别适合用于工业非连续或连续消除低浓度VOCs过程。本研究发现NTP-CAT体系中CeO2基催化剂更适合负载于13X载体以降解甲苯,并进一步考察CeO2负载量对VOCs消除效果的影响。结果发现,NTP-CAT 体系中30% CeO2/13X表现出最优性能,其可降解约85%的甲苯,CO2产物选择性可达55%。表征结果也表明,Ce组分在30% CeO2/13X表面仍可较好分散,而且表面的Ce3+物种含量最高。O2-TPD实验结果证实表面Ce3+物种来源于Ce4+物种的等离子体处理。而且,表面Ce3+含量越高,有利于产生更多的氧物种,随后将与其周边13X吸附活化的甲苯反应。因此,甲苯降解在NTP-CAT体系中应存在分工协同机制。

关键词: 低温等离子体, 甲苯, CeO2/13X, 催化氧化, 反应机理

Abstract:

The low-temperature plasma combined with catalyst technology (NTP-CAT) has feature of convenience in operation and relatively low energy consumption. It can be applied to industrial elimination of low concentration VOCs both continuous or batch. It was found the 13X supported CeO2 catalyst has higher efficiency to decompose toluene in NTP-CAT system, and then it is further explored the effect of CeO2 content on toluene degradation. The results showed that 30% CeO2/13X was the best for toluene degradation using NTP-CAT, and around 85% of toluene can be decomposed with about 55% CO2 selectivity. The characterization results demonstrated that Ce component was dispersed relatively evenly on the surface of 13X for 30% CeO2/13X. Specially, the maximum amount of Ce3+ was found on its surface, and the Ce3+ was originated from the Ce4+ species as deduced from the results of O2-TPD. Moreover, the increased amount of Ce3+ was beneficial for producing more active oxygen species, which can react with the NTP-treated toluene adsorbed on the 13X. Therefore, it can be concluded that the NTP-CAT system has synergic effect for toluene degradation.

Key words: low temperature plasma, toluene, CeO2/13X, catalytic oxidation, reaction mechanism

中图分类号: 

  • TQ 032.4

图1

实验装置及流程"

图2

等离子体放电时的Lissajous图形"

图3

等离子体协同铈基催化剂处理甲苯"

图4

等离子体协同不同负载量的铈基催化剂处理甲苯"

图5

13X和40%Ce/13X吸附甲苯的性能"

图6

不同催化剂反应前后的N2-等温吸脱附曲线和孔径分布"

表1

CeO2基催化剂的比表面积、孔容和孔径"

CatalystSBET/(m2/g)Vpore/(cm3/g)Pore size/nm
fresh 10%Ce/13X379.40.0525.0
used 10%Ce/13X313.00.0634.5
fresh 20%Ce/13X346.70.0425.1
used 20%Ce/13X342.60.0465.0
fresh 30%Ce/13X286.10.0355.0
used 30%Ce/13X173.90.0326.5
fresh 40%Ce/13X200.70.0274.7
used 40%Ce/13X179.20.0305.2

图7

不同催化剂XRD谱图"

图8

不同催化剂的Ce 3d XPS谱图"

图9

不同催化剂反应前后的O 1s 谱图"

表2

不同催化剂元素的表面组成"

CatalystsCeO2 loading/%Ce3+/Ce4+

Ce/

(Si+Al)

Ce3+/

(Si+Al)

Osur/O

Osur/

(Si+Al)

10%Ce/13X
fresh13.50.392.380.930.441.67
used0.412.250.920.421.42
20%Ce/13X
fresh20.70.282.870.800.42.63
used0.372.901.070.442.86
30%Ce/13X
fresh27.70.236.741.550.574.11
used0.318.132.520.614.57
40%Ce/13X
fresh35.10.1210.81.300.553.11
used0.199.31.770.583.42

图10

不同催化剂的H2-TPR谱图"

图11

不同反应条件下30%Ce/13X催化剂的O2-TPD"

1 梁文俊, 郭书清, 武红梅, 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7): 2755-2762.
Liang W J, Guo S Q, Wu H M, et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. CIESC Journal, 2017, 68(7): 2755-2762.
2 尚超, 韦献革, 白敏冬, 等. 低温等离子体催化降解烟气中甲苯的研究[J]. 中国环境科学, 2020, 40(9): 3714-3720.
Shang C, Wei X G, Bai M D, et al. Degradation of toluene in flue gas by low temperature plasma catalysis[J]. China Environmental Science, 2020, 40(9): 3714-3720.
3 梁文俊, 孙慧频, 朱玉雪, 等. 流向变换等离子体催化系统去除甲苯[J]. 中国环境科学, 2019, 39(12): 4974-4981.
Liang W J, Sun H P, Zhu Y X, et al. Removal of toluene with a reverse flow non-thermal plasma-catalytic reaction system[J]. China Environmental Science, 2019, 39(12): 4974-4981.
4 Fan H Y, Shi C, Li X S, et al. High-efficiency plasma catalytic removal of dilute benzene from air[J]. Journal of Physics D: Applied Physics, 2009, 42(22): 225105.
5 刘文正, 赵帅, 柴茂林, 等. 采用辉光放电等离子体的烟气处理技术研究[J]. 中国环境科学, 2017, 37(8): 2905-2914.
Liu W Z, Zhao S, Chai M L, et al. Technology of flue gas treatment with glow discharge plasma[J]. China Environmental Science, 2017, 37(8): 2905-2914.
6 竹涛, 梁文俊, 李坚, 等. 等离子体联合纳米技术降解甲苯废气的研究[J]. 中国环境科学, 2008, 28(8): 699-703.
Zhu T, Liang W J, Li J, et al. Degradation of toluene in exhaust gas with plasma and nano-materials[J]. China Environmental Science, 2008, 28(8): 699-703.
7 赵军杰, 党小庆, 秦彩虹, 等. 分子筛吸附: 低温等离子体氧化去除甲苯[J]. 环境污染与防治, 2018, 40(5): 562-565.
Zhao J J, Dang X Q, Qin C H, et al. Removal of toluene by molecular sieve adsorption-nonthermal plasma oxidation[J]. Environmental Pollution & Control, 2018, 40(5): 562-565.
8 Youn J S, Bae J, Park S, et al. Plasma-assisted oxidation of toluene over Fe/zeolite catalyst in DBD reactor using adsorption/desorption system[J]. Catalysis Communications, 2018, 113: 36-40.
9 滕晶晶, 党小庆, 秦彩虹, 等. Mn-Ag/13X的焙烧温度对等离子体催化氧化吸附态甲苯的影响[J]. 环境工程学报, 2017, 11(6): 3666-3670.
Teng J J, Dang X Q, Qin C H, et al. Effect of calcination temperature on Mn-Ag/13X for plasma catalytic oxidation of adsorbed toluene[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3666-3670.
10 Kim H H, Teramoto Y, Negishi N, et al. A mul- tidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review[J]. Catalysis Today, 2015, 256: 13-22.
11 康忠利, 党小庆, 秦彩虹, 等. 锰银复合催化剂对NTP降解吸附态甲苯的影响[J]. 环境工程, 2017, 35(2): 72-77, 99.
Kang Z L, Dang X Q, Qin C H, et al. Influence of manganese-silver catalyst on adsorbed toluene decomposition with non-thermal plasma[J]. Environmental Engineering, 2017, 35(2): 72-77, 99.
12 Yi H H, Yang X, Tang X L, et al. Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorption-plasma catalytic process[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(9): 2276-2286.
13 Yi H H, Yang X, Tang X L, et al. Performance and pathways of toluene degradation over Co/13X by different processes based on nonthermal plasma[J]. Energy & Fuels, 2017, 31(10): 11217-11224.
14 Trinh Q H, Gandhi M S, Mok Y S. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst[J]. Japanese Journal of Applied Physics, 2015, 54(1S): 01AG04.
15 Lu M J, Huang R, Wu J L, et al. On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature[J]. Catalysis Today, 2015, 242: 274-286.
16 Okumura K, Kobayashi T, Tanaka H, et al. Toluene combustion over palladium supported on various metal oxide supports[J]. Applied Catalysis B: Environmental, 2003, 44(4): 325-331.
17 Ordóñez S, Bello L, Sastre H, et al. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(2): 139-149.
18 樊国栋, 王丽娜. 热处理温度对Ce掺杂TiO2光催化剂结构与性能的影响[J]. 陕西科技大学学报(自然科学版), 2015, 33(5): 46-49, 75.
Fan G D, Wang L N. Annealing temperature on the influence of the structure and photocatalytic performance of Ce doped TiO2[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2015, 33(5): 46-49, 75.
19 Lawrence N J, Brewer J R, Wang L, et al. De- fect engineering in cubic cerium oxide nanostructures for catalytic oxidation[J]. Nano Letters, 2011, 11(7): 2666-2671.
20 Wu Z L, Mann A K P, Li M J, et al. Spectro- scopic investigation of surface-dependent acid–base property of ceria nanoshapes[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7340-7350.
21 Liu X, Zhou K, Wang L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131(9): 3140-3141.
22 Jiang L Y, Nie G F, Zhu R Y, et al. Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts[J]. Journal of Environmental Sciences, 2017, 55: 266-273.
23 Asgari N, Haghighi M, Shafiei S. Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature[J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 587-597.
24 Abbasi Z, Haghighi M, Fatehifar E, et al. Syn- thesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1445-1454.
25 Tang X L, Gao F Y, Wang J G, et al. Comparative study between single- and double-dielectric barrier discharge reactor for nitric oxide removal[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6197-6203.
26 于欣, 党小庆, 李世杰, 等. 单介质和双介质阻挡放电低温等离子体降解甲苯的比较[J]. 环境工程学报, 2020, 14(4): 1033-1041.
Yu X, Dang X Q, Li S J, et al. Comparison of single and double dielectric barrier discharge non-thermal plasma for toluene removal[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1033-1041.
27 Kim H H, Kim J H, Ogata A. Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles[J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135210.
28 Yao X M, Jiang N, Li J, et al. An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation[J]. Chemical Engineering Journal, 2019, 362: 339-348.
29 Xiao G, Xu W P, Wu R B, et al. Non-thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1033-1065.
30 Zhang Z P, Chen L Q, Li Z B, et al. Activity and SO2 resistance of amorphous CeaTiOx catalysts for the selective catalytic reduction of NO with NH3: in situ DRIFT studies[J]. Catalysis Science & Technology, 2016, 6(19): 7151-7162.
31 Li Y Z, Sun Q, Kong M, et al. Coupling oxy- gen ion conduction to photocatalysis in mesoporous nanorod-like ceria significantly improves photocatalytic efficiency[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14050-14057.
32 Zhang S, Guo Y Y, Li X Y, et al. Effects of cerium doping position on physicochemical properties and catalytic performance in methanol total oxidation[J]. Journal of Rare Earths, 2018, 36(8): 811-818.
33 Li J J, Yu E Q, Cai S C, et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J]. Applied Catalysis B: Environmental, 2019, 240: 141-152.
34 Trovarelli A. Structural properties and non- stoichiometric behavior of CeO2[M]//Catalysis by Ceria and Related Materials. London: Imperial College Press, 2002: 15-50.
35 Wang B F, Chen B X, Sun Y H, et al. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2018, 238: 328-338.
36 Liu C J, Yu K L, Zhang Y P, et al. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion[J]. Applied Catalysis B: Environmental, 2004, 47(2): 95-100.
37 Chen L, Zhang X W, Huang L, et al. Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe2O3-CuO/γ-Al2O3 catalyst[J]. Journal of Natural Gas Chemistry, 2010, 19(6): 628-637.
38 Huang H B, Ye D Q, Leung D Y C, et al. By products and pathways of toluene destruction via plasma-catalysis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1/2): 87-93.
39 Li S J, Dang X Q, Yu X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275.
40 Feng X X, Liu H X, He C, et al. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review[J]. Catalysis Science & Technology, 2018, 8(4): 936-954.
[1] 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510.
[2] 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315.
[3] 朱倩倩, 靳海波, 郭晓燕, 何广湘, 马磊, 张荣月, 谷庆阳, 杨索和. H2O2/乙腈体系下MgO催化环己酮Baeyer-Villiger绿色氧化合成ε-己内酯的研究[J]. 化工学报, 2021, 72(5): 2638-2646.
[4] 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252.
[5] 吕全明, 孙伟振, 赵玲. 连四甲苯液相氧化过程热力学分析及动力学模拟[J]. 化工学报, 2021, 72(2): 1009-1017.
[6] 王刚,段学志,袁渭康,周兴贵. 钛硅分子筛TS-1催化环氧丙烷异构反应的机理探究[J]. 化工学报, 2021, 72(10): 5150-5158.
[7] 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593.
[8] 何莉, 邹雄, 叶昊天, 李香琴, 董宏光. 邻甲酚-间二甲苯-乙二醇液液平衡数据的测定与关联[J]. 化工学报, 2020, 71(7): 2993-2999.
[9] 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008.
[10] 金燕, 杨倩, 赵文斌, 胡宝山. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 2564-2585.
[11] 高文强, 焦纬洲, 刘有智. 超重力强化O3/H2O2氧化甲苯合成苯甲酸的研究[J]. 化工学报, 2020, 71(3): 1045-1052.
[12] 陶长元, 王秀秀, 刘作华, 刘仁龙, 栾进华. 湿法磷酸浸出强化及有机质去除研究[J]. 化工学报, 2020, 71(10): 4792-4799.
[13] 高君安, 王伟, 张傑, 雷志刚, 史东军, 曲令多. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343.
[14] 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241.
[15] 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张英, 苏宏业, 褚健. 基于支持向量基的关联规则挖掘及其在模拟移动床PX吸附分离过程中的应用[J]. CIESC Journal, 2005, 13(6): 751 -757 .
[2] 马璐, 李浩然, 王从敏, 韩世钧. α-蒎烯+顺式蒎烷+正已醇体系的等温等压汽液平衡[J]. CIESC Journal, 2004, 12(1): 92 -95 .
[3] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[4] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[5] 朱建华, 沈复. 酯化反应蒸馏过程的模型化及模拟研究[J]. CIESC Journal, 2003, 11(6): 736 -739 .
[6] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[7] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[8] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[9] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[10] 章亭洲, 杨立荣, 朱自强, 吴坚平. 有机溶剂中树脂催化丙酮氰醇分解反应的动力学模型[J]. CIESC Journal, 2003, 11(3): 355 -357 .