1 |
刘佳宁, 马嘉浩, 张军营, 等. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186.
|
|
Liu J N, Ma J H, Zhang J Y, et al. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network[J]. CIESC Journal, 2022, 73(9): 4173-4186.
|
2 |
Hoff E A, de Hoe G X, Mulvaney C M, et al. Thiol-ene networks from sequence-defined polyurethane macromers[J]. Journal of the American Chemical Society, 2020, 142(14): 6729-6736.
|
3 |
Zheng J, Arifuzzaman M, Tang X M, et al. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment[J]. Materials Horizons, 2023, 10(5): 1608-1624.
|
4 |
Worch J C, Dove A P. 100th anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics[J]. ACS Macro Letters, 2020, 9(11): 1494-1506.
|
5 |
Wang B B, Wang Y, Du S, et al. Upcycling of thermosetting polymers into high-value materials[J]. Materials Horizons, 2023, 10(1): 41-51.
|
6 |
Schirmeister C G, Mülhaupt R. Closing the carbon loop in the circular plastics economy[J]. Macromolecular Rapid Communications, 2022, 43(13): 2200247.
|
7 |
Fortman D, Brutman J P, de Hoe G X, et al. Approaches to sustainable and continually recyclable cross-linked polymers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11145-11159.
|
8 |
Zou W K, Dong J T, Luo Y W, et al. Dynamic covalent polymer networks: from old chemistry to modern day innovations[J]. Advanced Materials, 2017, 29(14): 1606100.
|
9 |
van Zee N J, Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology[J]. Progress in Polymer Science, 2020, 104: 101233.
|
10 |
Luo J C, Demchuk Z, Zhao X, et al. Elastic vitrimers: beyond thermoplastic and thermoset elastomers[J]. Matter, 2022, 5(5): 1391-1422.
|
11 |
Porath L, Soman B, Jing B B, et al. Vitrimers: using dynamic associative bonds to control viscoelasticity, assembly, and functionality in polymer networks[J]. ACS Macro Letters, 2022, 11(4): 475-483.
|
12 |
Zheng J, Png Z M, Ng S H, et al. Vitrimers: current research trends and their emerging applications[J]. Materials Today, 2021, 51: 586-625.
|
13 |
Zheng N, Xu Y, Zhao Q, et al. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing[J]. Chemical Reviews, 2021, 121(3): 1716-1745.
|
14 |
陈峰, 侯宇坤, 赵骞. 一种硼酸酯动态交联环氧树脂的合成与性能[J]. 化工学报, 2019, 70(11): 4449-4456.
|
|
Chen F, Hou Y K, Zhao Q. Synthesis and properties of epoxy resin crosslinked by dynamic boronic ester bonds[J]. CIESC Journal, 2019, 70(11): 4449-4456.
|
15 |
Chen X X, Dam M A, Ono K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 1698-1702.
|
16 |
张泽平, 容敏智, 章明秋. 基于可逆共价化学的交联聚合物加工成型研究: 聚合物工程发展的新挑战[J]. 高分子学报, 2018(7): 829-852.
|
|
Zhang Z P, Rong M Z, Zhang M Q. Research progress of processing of crosslinked polymers based on reversible covalent chemistry: a new challenge to the development of polymer engineering[J]. Acta Polymerica Sinica, 2018(7): 829-852.
|
17 |
Liu J, Li J J, Luo Z H, et al. Fast room-temperature self-healing vitrimers enabled by accelerated associative exchange kinetics[J]. Chemical Engineering Journal, 2023, 452: 139452.
|
18 |
Zhang B, Kowsari K, Serjouei A, et al. Reprocessable thermosets for sustainable three-dimensional printing[J]. Nature Communications, 2018, 9: 1831.
|
19 |
Zheng N, Fang Z Z, Zou W K, et al. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation[J]. Angewandte Chemie International Edition, 2016, 55(38): 11421-11425.
|
20 |
Zhang V, Kang B, Accardo J V, et al. Structure-reactivity-property relationships in covalent adaptable networks[J]. Journal of the American Chemical Society, 2022, 144(49): 22358-22377.
|
21 |
Winne J M, Leibler L, Du Prez F E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective[J]. Polymer Chemistry, 2019, 10(45): 6091-6108.
|
22 |
Zhang Z P, Rong M Z, Zhang M Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science, 2018, 80: 39-93.
|
23 |
Scheutz G M, Lessard J J, Sims M B, et al. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets[J]. Journal of the American Chemical Society, 2019, 141(41): 16181-16196.
|
24 |
Denissen W, Rivero G, Nicolaÿ R, et al. Vinylogous urethane vitrimers[J]. Advanced Functional Materials, 2015, 25(16): 2451-2457.
|
25 |
Denissen W, Droesbeke M, Nicolaÿ R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nature Communications, 2017, 8: 14857.
|
26 |
Guerre M, Taplan C, Nicolaÿ R, et al. Fluorinated vitrimer elastomers with a dual temperature response[J]. Journal of the American Chemical Society, 2018, 140(41): 13272-13284.
|
27 |
de Alwis Watuthanthrige N, Chakma P, Konkolewicz D. Designing dynamic materials from dynamic bonds to macromolecular architecture[J]. Trends in Chemistry, 2021, 3(3): 231-247.
|
28 |
Lessard J J, Scheutz G M, Sung S H, et al. Block copolymer vitrimers[J]. Journal of the American Chemical Society, 2020, 142(1): 283-289.
|
29 |
Liu J, Li J J, Luo Z H, et al. Mapping crosslinking reaction-structure-property relationship in polyether-based vinylogous urethane vitrimers[J]. AIChE Journal, 2022, 68(4): e17587.
|
30 |
Lessard J J, Stewart K A, Sumerlin B S. Controlling dynamics of associative networks through primary chain length[J]. Macromolecules, 2022, 55(22): 10052-10061.
|
31 |
Spiesschaert Y, Taplan C, Stricker L, et al. Influence of the polymer matrix on the viscoelastic behaviour of vitrimers[J]. Polymer Chemistry, 2020, 11(33): 5377-5385.
|
32 |
Taplan C, Guerre M, Winne J M, et al. Fast processing of highly crosslinked, low-viscosity vitrimers[J]. Materials Horizons, 2020, 7(1): 104-110.
|