化工学报 ›› 2024, Vol. 75 ›› Issue (2): 475-483.DOI: 10.11949/0438-1157.20231129
收稿日期:
2023-11-02
修回日期:
2024-01-03
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
王林
作者简介:
王林(1973—),男,博士,教授,wlhaust@163.com
基金资助:
Lin WANG(), Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN
Received:
2023-11-02
Revised:
2024-01-03
Online:
2024-02-25
Published:
2024-04-10
Contact:
Lin WANG
摘要:
含R1234yf混合工质具有系统性能优良且对环境友好的特点,在当前制冷剂迭代中受到了广泛关注。汽液相平衡性质是混合工质的基础热物理性质,其理论计算至关重要。为提高含R1234yf混合工质汽液相平衡数据的计算精度,选取PR状态方程结合vdW、WS、MHV1三种混合规则和NRTL活度系数模型评估了16种含R1234yf二元混合工质的汽液相平衡性质。结果表明,WS混合规则和MHV1混合规则计算性能优于vdW混合规则;vdW混合规则对大多数混合工质计算性能较好。最后提出一种预测模型预测含R1234yf混合工质汽液相平衡性质,预测的相对压力偏差值为0.49%,气相摩尔分数绝对偏差值为0.0031,预测偏差满足工程应用。
中图分类号:
王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483.
Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures[J]. CIESC Journal, 2024, 75(2): 475-483.
混合工质 | 实验点数 | 温度/K | AARD(p)/% | ||
---|---|---|---|---|---|
vdW | MHV1+NRTL | WS+NRTL | |||
R1234yf+氢氟烃类 | |||||
R1234yf+ R134a[ | 49 | 278~333 | 0.11 | 0.10 | 0.10 |
R1234yf+ R152a[ | 107 | 278~323 | 0.19 | 0.16 | 0.14 |
R1234yf+227ea[ | 50 | 283~323 | 0.31 | 0.26 | 0.26 |
R1234yf+245cb[ | 72 | 283~343 | 0.23 | 0.21 | 0.21 |
R32+ R1234yf[ | 159 | 273~340 | 0.59 | 0.27 | 0.33 |
R143a+ R1234yf[ | 45 | 283~323 | 0.26 | 0.18 | 0.18 |
R161+ R1234yf[ | 115 | 283~323 | 0.20 | 0.18 | 0.16 |
R23+ R1234yf[ | 100 | 193~332 | 0.78 | 0.63 | 0.58 |
R125+ R1234yf[ | 101 | 283~313 | 0.14 | 0.13 | 0.13 |
平均 | 0.31 | 0.24 | 0.23 | ||
R1234yf+卤代烯烃类 | |||||
R1243zf+ R1234yf[ | 32 | 283~313 | 0.11 | 0.11 | 0.11 |
R1234yf +R1234ze(E)[ | 77 | 283~333 | 0.16 | 0.13 | 0.16 |
R1216+R1234yf[ | 50 | 283~323 | 0.24 | 0.20 | 0.21 |
R1123+R1234yf[ | 60 | 300~330 | 0.18 | 0.13 | 0.14 |
平均 | 0.17 | 0.14 | 0.16 | ||
R1234yf+烷烃类 | |||||
R1234yf +propane[ | 55 | 253~293 | 0.13 | 0.10 | 0.08 |
R1234yf +butane[ | 50 | 283~323 | 1.92 | 0.31 | 0.33 |
R1234yf +isobutane[ | 60 | 283~323 | 0.52 | 0.17 | 0.17 |
平均 | 0.86 | 0.19 | 0.19 |
表1 三种混合规则对含R1234yf混合工质的汽液相平衡计算偏差
Table 1 Calculation deviations in the vapor-liquid equilibrium of the R1234yf mixtures by three mixing rules
混合工质 | 实验点数 | 温度/K | AARD(p)/% | ||
---|---|---|---|---|---|
vdW | MHV1+NRTL | WS+NRTL | |||
R1234yf+氢氟烃类 | |||||
R1234yf+ R134a[ | 49 | 278~333 | 0.11 | 0.10 | 0.10 |
R1234yf+ R152a[ | 107 | 278~323 | 0.19 | 0.16 | 0.14 |
R1234yf+227ea[ | 50 | 283~323 | 0.31 | 0.26 | 0.26 |
R1234yf+245cb[ | 72 | 283~343 | 0.23 | 0.21 | 0.21 |
R32+ R1234yf[ | 159 | 273~340 | 0.59 | 0.27 | 0.33 |
R143a+ R1234yf[ | 45 | 283~323 | 0.26 | 0.18 | 0.18 |
R161+ R1234yf[ | 115 | 283~323 | 0.20 | 0.18 | 0.16 |
R23+ R1234yf[ | 100 | 193~332 | 0.78 | 0.63 | 0.58 |
R125+ R1234yf[ | 101 | 283~313 | 0.14 | 0.13 | 0.13 |
平均 | 0.31 | 0.24 | 0.23 | ||
R1234yf+卤代烯烃类 | |||||
R1243zf+ R1234yf[ | 32 | 283~313 | 0.11 | 0.11 | 0.11 |
R1234yf +R1234ze(E)[ | 77 | 283~333 | 0.16 | 0.13 | 0.16 |
R1216+R1234yf[ | 50 | 283~323 | 0.24 | 0.20 | 0.21 |
R1123+R1234yf[ | 60 | 300~330 | 0.18 | 0.13 | 0.14 |
平均 | 0.17 | 0.14 | 0.16 | ||
R1234yf+烷烃类 | |||||
R1234yf +propane[ | 55 | 253~293 | 0.13 | 0.10 | 0.08 |
R1234yf +butane[ | 50 | 283~323 | 1.92 | 0.31 | 0.33 |
R1234yf +isobutane[ | 60 | 283~323 | 0.52 | 0.17 | 0.17 |
平均 | 0.86 | 0.19 | 0.19 |
R1234yf+R290 | R1234yf+R600 | R1234yf+R600a | |||
---|---|---|---|---|---|
T/K | k12 | T/K | k12 | T/K | k12 |
253.15 | 0.092 | 283.15 | 0.100 | 283.15 | 0.095 |
263.15 | 0.093 | 293.15 | 0.101 | 293.15 | 0.095 |
273.15 | 0.094 | 303.15 | 0.102 | 303.15 | 0.095 |
283.15 | 0.094 | 313.15 | 0.101 | 313.15 | 0.093 |
293.15 | 0.094 | 323.15 | 0.101 | 323.15 | 0.093 |
平均 | 0.093 | 0.101 | 0.094 |
表2 R1234yf+烷烃类混合工质的二元交互作用参数的最优值(vdW混合规则)
Table 2 Optimal value of binary interaction parameters for R1234yf+HCs mixtures(vdW mixing rules)
R1234yf+R290 | R1234yf+R600 | R1234yf+R600a | |||
---|---|---|---|---|---|
T/K | k12 | T/K | k12 | T/K | k12 |
253.15 | 0.092 | 283.15 | 0.100 | 283.15 | 0.095 |
263.15 | 0.093 | 293.15 | 0.101 | 293.15 | 0.095 |
273.15 | 0.094 | 303.15 | 0.102 | 303.15 | 0.095 |
283.15 | 0.094 | 313.15 | 0.101 | 313.15 | 0.093 |
293.15 | 0.094 | 323.15 | 0.101 | 323.15 | 0.093 |
平均 | 0.093 | 0.101 | 0.094 |
R1243zf+ R1234yf | R1234yf+ R1234ze(E) | R1216+R1234yf | R1123+R1234yf | ||||
---|---|---|---|---|---|---|---|
T/K | k12 | T/K | k12 | T/K | k12 | T/K | k12 |
283.15 | 0.004 | 283.57 | 0.013 | 283.28 | 0.021 | 330 | -0.006 |
293.15 | 0.002 | 293.54 | 0.012 | 293.24 | 0.018 | 303.2 | -0.010 |
303.15 | 0.003 | 303.51 | 0.009 | 303.21 | 0.019 | 313.15 | -0.006 |
313.15 | 0 | 313.48 | 0.01 | 313.19 | 0.018 | 323.11 | -0.009 |
323.46 | 0.01 | 323.16 | 0.017 | 328.11 | -0.010 | ||
333.44 | 0.01 | ||||||
平均 | 0.002 | 0.011 | 0.018 | -0.008 |
表3 R1234yf+卤代烯烃类混合工质的二元交互作用参数的最优值(vdW混合规则)
Table 3 Optimal value of binary interaction parameters for R1234yf+ halogenated olefins mixtures(vdW mixing rules)
R1243zf+ R1234yf | R1234yf+ R1234ze(E) | R1216+R1234yf | R1123+R1234yf | ||||
---|---|---|---|---|---|---|---|
T/K | k12 | T/K | k12 | T/K | k12 | T/K | k12 |
283.15 | 0.004 | 283.57 | 0.013 | 283.28 | 0.021 | 330 | -0.006 |
293.15 | 0.002 | 293.54 | 0.012 | 293.24 | 0.018 | 303.2 | -0.010 |
303.15 | 0.003 | 303.51 | 0.009 | 303.21 | 0.019 | 313.15 | -0.006 |
313.15 | 0 | 313.48 | 0.01 | 313.19 | 0.018 | 323.11 | -0.009 |
323.46 | 0.01 | 323.16 | 0.017 | 328.11 | -0.010 | ||
333.44 | 0.01 | ||||||
平均 | 0.002 | 0.011 | 0.018 | -0.008 |
混合工质 | 温度范围/K | vdW(优化值) | k12平均值 | vdW (预测值) | ||
---|---|---|---|---|---|---|
AAD(y) | AARD(p)/% | AAD(y) | AARD(p)/% | |||
R1234yf+R290 | 253.15~293.15 | 0.0021 | 0.13 | 0.093 | 0.0022 | 0.19 |
R1234yf+R600 | 283.15~323.15 | 0.0049 | 1.90 | 0.101 | 0.0049 | 1.93 |
R1234yf+R600a | 283.15~323.15 | 0.0043 | 0.52 | 0.094 | 0.0042 | 0.54 |
R1243zf+R1234yf | 283.15~313.15 | 0.0018 | 0.11 | 0.002 | 0.0017 | 0.22 |
R1234yf+R1234ze(E) | 283.57~333.44 | 0.0013 | 0.16 | 0.011 | 0.0013 | 0.21 |
R1216+R1234yf | 283.28~323.16 | 0.0033 | 0.24 | 0.018 | 0.0035 | 0.33 |
R1123+R1234yf | 303.2~330.0 | 0.0188 | 0.20 | -0.008 | 0.0189 | 0.35 |
表4 R1234yf+烷烃类/卤代烯烃类二元混合物的优化结果与预测结果的比较
Table 4 Comparison of the optimization results and prediction results of R1234yf+HCs/halogenated olefins binary mixture
混合工质 | 温度范围/K | vdW(优化值) | k12平均值 | vdW (预测值) | ||
---|---|---|---|---|---|---|
AAD(y) | AARD(p)/% | AAD(y) | AARD(p)/% | |||
R1234yf+R290 | 253.15~293.15 | 0.0021 | 0.13 | 0.093 | 0.0022 | 0.19 |
R1234yf+R600 | 283.15~323.15 | 0.0049 | 1.90 | 0.101 | 0.0049 | 1.93 |
R1234yf+R600a | 283.15~323.15 | 0.0043 | 0.52 | 0.094 | 0.0042 | 0.54 |
R1243zf+R1234yf | 283.15~313.15 | 0.0018 | 0.11 | 0.002 | 0.0017 | 0.22 |
R1234yf+R1234ze(E) | 283.57~333.44 | 0.0013 | 0.16 | 0.011 | 0.0013 | 0.21 |
R1216+R1234yf | 283.28~323.16 | 0.0033 | 0.24 | 0.018 | 0.0035 | 0.33 |
R1123+R1234yf | 303.2~330.0 | 0.0188 | 0.20 | -0.008 | 0.0189 | 0.35 |
混合工质 | 实验点数 | 优化偏差 | k12预测值 | 预测值偏差 | ||
---|---|---|---|---|---|---|
AAD(y) | AARD(p)/% | AAD(y) | AARD(p)/% | |||
R1234yf+R134a | 49 | 0.0008 | 0.11 | 0.0183 | 0.0005 | 0.16 |
R1234yf+R152a | 107 | 0.0015 | 0.19 | 0.0175 | 0.0013 | 0.24 |
R1234yf+227ea | 50 | 0.0028 | 0.31 | 0.0022 | 0.0027 | 0.35 |
R1234yf+245cb | 72 | 0.0068 | 0.23 | 0.0017 | 0.0076 | 0.48 |
R32+R1234yf | 132 | 0.0086 | 0.72 | 0.0398 | 0.0058 | 0.78 |
R161+R1234yf | 115 | 0.0019 | 0.20 | 0.0016 | 0.0023 | 0.50 |
R23+R1234yf | 59 | 0.0049 | 0.63 | 0.0266 | 0.0053 | 0.86 |
R125+R1234yf | 101 | 0.0011 | 0.14 | 0.0032 | 0.0010 | 0.19 |
R143a+R1234yf | 45 | 0.0013 | 0.26 | 0.0015 | 0.0013 | 0.72 |
平均 | 0.0033 | 0.31 | 0.0031 | 0.49 |
表5 R1234yf+HFCs二元混合物的优化结果与预测结果的比较
Table 5 Comparison of the optimization results and prediction results of R1234yf+HFCs binary mixture
混合工质 | 实验点数 | 优化偏差 | k12预测值 | 预测值偏差 | ||
---|---|---|---|---|---|---|
AAD(y) | AARD(p)/% | AAD(y) | AARD(p)/% | |||
R1234yf+R134a | 49 | 0.0008 | 0.11 | 0.0183 | 0.0005 | 0.16 |
R1234yf+R152a | 107 | 0.0015 | 0.19 | 0.0175 | 0.0013 | 0.24 |
R1234yf+227ea | 50 | 0.0028 | 0.31 | 0.0022 | 0.0027 | 0.35 |
R1234yf+245cb | 72 | 0.0068 | 0.23 | 0.0017 | 0.0076 | 0.48 |
R32+R1234yf | 132 | 0.0086 | 0.72 | 0.0398 | 0.0058 | 0.78 |
R161+R1234yf | 115 | 0.0019 | 0.20 | 0.0016 | 0.0023 | 0.50 |
R23+R1234yf | 59 | 0.0049 | 0.63 | 0.0266 | 0.0053 | 0.86 |
R125+R1234yf | 101 | 0.0011 | 0.14 | 0.0032 | 0.0010 | 0.19 |
R143a+R1234yf | 45 | 0.0013 | 0.26 | 0.0015 | 0.0013 | 0.72 |
平均 | 0.0033 | 0.31 | 0.0031 | 0.49 |
1 | 陈光明, 高能, 朴春成. 低碳制冷剂研究及应用最新进展[J]. 制冷学报, 2016, 37(1): 1-11, 31. |
Chen G M, Gao N, Piao C C. State of the art of research and applications of low-carbon refrigerants[J]. Journal of Refrigeration, 2016, 37(1): 1-11, 31. | |
2 | Kamiaka T, Dang C B, Hihara E. Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a[J]. International Journal of Refrigeration, 2013, 36(3): 965-971. |
3 | Bell I H, Riccardi D, Bazyleva A, et al. Survey of data and models for refrigerant mixtures containing halogenated olefins[J]. Journal of Chemical and Engineering Data, 2021, 66(6): 2335-2354. |
4 | ASHRAE. Designation and safety classification of refrigerants: ANSI/A Standard 34—2022[S]. America: ASHRAE, 2022. |
5 | 赵雄飞. 含HFO环保替代混合工质相平衡性质研究[D]. 太原: 太原理工大学, 2018. |
Zhao X F. Study on vapor-liquid equilibria of alternative mixture containing HFO[D].Taiyuan: Taiyuan University of Technology, 2018. | |
6 | 方一波. 含HFOs二元混合工质汽液相平衡理论与实验研究[D]. 杭州: 浙江大学, 2021. |
Fang Y B. Theoretical and experimental study on the vapor-liquid equilibria of the binary mixtures containing HFOs[D]. Hangzhou: Zhejiang University, 2021. | |
7 | 汪尔奇, 彭书舟, 杨震, 等. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
Wang E Q, Peng S Z, Yang Z, et al. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs[J]. CIESC Journal, 2023, 74(8): 3216-3225. | |
8 | Yang Z Q, Kou L G, Han S, et al. Vapor-liquid equilibria of 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf) + 1, 1, 1, 2, 2-pentafluoropropane (HFC-245cb) system[J]. Fluid Phase Equilibria, 2016, 427: 390-393. |
9 | Peng S Z, Li S H, Yang Z, et al. Vapor-liquid equilibrium measurements for the binary mixtures of pentafluoroethane (R125) with 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) and 3, 3, 3-trifluoropropene (R1243zf)[J]. International Journal of Refrigeration, 2022, 134: 115-125. |
10 | Zhong Q, Dong X Q, Zhao Y X, et al. Measurements of isothermal vapour-liquid equilibrium for the 2,3,3,3-tetrafluoroprop-1-ene + propane system at temperatures from 253.150 to 293.150 K[J]. International Journal of Refrigeration, 2017, 81: 26-32. |
11 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
12 | Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
13 | Valtz A, El Abbadi J, Coquelet C, et al. Experimental measurements and modelling of vapour-liquid equilibrium of 2, 3, 3, 3-tetrafluoropropene (R-1234yf) + 1, 1, 1, 2, 2-pentafluoropropane (R-245cb) system[J]. International Journal of Refrigeration, 2019, 107: 315-325. |
14 | Kwak T Y, Mansoori G A. van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling[J]. Chemical Engineering Science, 1986, 41(5): 1303-1309. |
15 | Michelsen M L. A modified Huron-Vidal mixing rule for cubic equations of state[J]. Fluid Phase Equilibria, 1990, 60(1/2): 213-219. |
16 | Huron M J, Vidal J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures[J]. Fluid Phase Equilibria, 1979, 3(4): 255-271. |
17 | Wong D S H, Sandler S I. A theoretically correct mixing rule for cubic equations of state[J]. AIChE Journal, 1992, 38(5): 671-680. |
18 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
19 | El Abbadi J, Coquelet C, Valtz A, et al. Experimental measurements and modelling of vapour-liquid equilibria for four mixtures of 2, 3, 3, 3-tetrafluoropropene (R1234yf) with 1, 1, 1, 2-tetrafluoroethane (R134a) or 1, 1-difluoroethane (R152a) or trans-1-chloro-3, 3, 3-trifluoropropene (R1233zd(E)) or 2-chloro-3, 3, 3-trifluoropropene (R1233xf)[J]. International Journal of Refrigeration, 2022, 140: 172-185. |
20 | Hu P, Chen L X, Zhu W B, et al. Isothermal VLE measurements for the binary mixture of 2, 3, 3, 3-tetrafluoroprop-1-ene (HFO-1234yf) + 1, 1-difluoroethane (HFC-152a)[J]. Fluid Phase Equilibria, 2014, 373: 80-83. |
21 | Hu P, Chen L X, Zhu W B, et al. Vapor-liquid equilibria for the binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (HFC-227ea)[J]. Fluid Phase Equilibria, 2014, 379: 59-61. |
22 | Hu X Z, Yang T, Meng X Y, et al. Vapor-liquid equilibrium measurements for difluoromethane (R32) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) and fluoroethane (R161) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf)[J]. Fluid Phase Equilibria, 2017, 438: 10-17. |
23 | Li S H, Peng S Z, Yang Z, et al. Measurements and correlation of vapor-liquid equilibrium for difluoromethane (R-32) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R-1234yf) and pentafluoroethane(R-125)+ propane (R-290)[J]. Fluid Phase Equilibria, 2021, 538: 113010. |
24 | Outcalt S L, Rowane A J. Bubble point measurements of three binary mixtures of refrigerants: R-32/1234yf, R-32/1234ze(E) and R-1132a/1234yf[J]. Journal of Chemical and Engineering Data, 2022, 67(4):932-940. |
25 | Hu P, Chen L X, Chen Z S. Vapor-liquid equilibria for the 1, 1, 1, 2-tetrafluoroethane (HFC-134a) + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (HFC-227ea) and 1, 1, 1-trifluoroethane (HFC-143a) + 2, 3, 3, 3-tetrafluoroprop-1-ene (HFO-1234yf) systems[J]. Fluid Phase Equilibria, 2013, 360: 293-297. |
26 | Chen L X, Hu P, Zhu W B, et al. Vapor–liquid equilibria of fluoroethane (HFC-161) + 2, 3, 3, 3-tetrafluoroprop-1-ene (HFO-1234yf)[J]. Fluid Phase Equilibria, 2015, 392: 19-23. |
27 | Kochenburger T M, Gomse D, Tratschitt I, et al. Vapor-liquid and vapor-liquid-liquid equilibrium measurements and correlation of the binary mixtures 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) + (tetrafluoromethane (R14), trifluoromethane (R23), octafluoropropane (R218), nitrogen (R728) and argon (R740)) and ethane (R170) + trifluoromethane (R23)[J]. Fluid Phase Equilibria, 2017, 450: 13-23. |
28 | Madani H, Valtz A, Zhang F, et al. Isothermal vapor–liquid equilibrium data for the trifluoromethane (R23) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) system at temperatures from 254 to 348 K[J]. Fluid Phase Equilibria, 2016, 415: 158-165. |
29 | Yang T, Hu X Z, Meng X Y, et al. Vapour-liquid equilibria for the binary systems of pentafluoroethane {(R125) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf)} and{trans-1, 3, 3, 3-tetrafluoropropene R1234ze(E)}[J]. The Journal of Chemical Thermodynamics, 2020, 150: 106222. |
30 | Fedele L, Lombardo G, Menegazzo D, et al. Isothermal (vapour + liquid) equilibrium measurements and correlation of the binary mixture{3, 3, 3-trifluoropropene (HFO-1243zf) + 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf)} at temperatures from 283.15K to 323.15K[J]. International Journal of Thermophysics, 2023, 44(6): 83. |
31 | Ye G R, Fang Y B, Guo Z K, et al. Experimental investigation of vapor-liquid equilibrium for 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf) + trans-1, 3, 3, 3-tetrafluoropropene (HFO-1234ze(E)) at temperatures from 284 to 334 K[J]. Journal of Chemical & Engineering Data, 2021, 66(4): 1741-1753. |
32 | Fang Y B, Ye G R, Ni H, et al. Vapor-liquid equilibrium for the binary systems 1, 1, 2, 3, 3, 3-hexafluoro-1-propene (R1216) + 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) and 1, 1, 2, 3, 3, 3-hexafluoro-1-propene (R1216) + trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E))[J]. Journal of Chemical & Engineering Data, 2020, 65(9): 4215-4222. |
33 | Miyamoto H, Nishida M, Saito T. Measurement of the vapour-liquid equilibrium properties of binary mixtures of the low-GWP refrigerants R1123 and R1234yf[J]. The Journal of Chemical Thermodynamics, 2021, 158: 106456. |
34 | Hu P, Zhang N, Chen L X, et al. Vapor-liquid equilibrium measurements for 2, 3, 3, 3-tetrafluoroprop-1-ene + butane at temperatures from 283.15 to 323.15 K[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1507-1512. |
35 | Hu P, Chen L X, Chen Z S. Vapor-liquid equilibria for binary system of 2, 3, 3, 3-tetrafluoroprop-1-ene (HFO-1234yf) + isobutane (HC-600a)[J]. Fluid Phase Equilibria, 2014, 365: 1-4. |
36 | 陈龙祥. 含新型制冷工质HFO-1234yf的混合物的气液相平衡研究[D]. 合肥: 中国科学技术大学, 2015. |
Chen L X. Study of vapor-liquid equilibrium for the mixtures containing new refrigerant HFO-1234yf[D].Hefei: University of Science and Technology of China, 2015. | |
37 | 吴子睿, 孙瑞, 石凌峰, 等. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
Wu Z R, Sun R, Shi L F, et al. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures[J]. CIESC Journal, 2022, 73(4): 1483-1492. | |
38 | Chen C H, Su W, Xing L L, et al. A prediction model for the binary interaction parameter of PR-VDW to predict thermo-physical properties of CO2 mixtures[J]. Fluid Phase Equilibria, 2023, 565: 113634. |
[1] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[2] | 蒙西, 王岩, 孙子健, 乔俊飞. 基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测[J]. 化工学报, 2024, 75(2): 593-603. |
[3] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[4] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[5] | 刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
[6] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[7] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[8] | 钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196. |
[9] | 尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365. |
[10] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[11] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[12] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[15] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||