化工学报 ›› 2024, Vol. 75 ›› Issue (2): 493-504.DOI: 10.11949/0438-1157.20231294
刘起超1(), 张世博1, 周云龙1(
), 李昱庆1, 陈聪2, 冉议文1
收稿日期:
2023-12-04
修回日期:
2024-01-11
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
周云龙
作者简介:
刘起超(1991—),男,博士,讲师,lqcliuqichao@126.com
基金资助:
Qichao LIU1(), Shibo ZHANG1, Yunlong ZHOU1(
), Yuqing LI1, Cong CHEN2, Yiwen RAN1
Received:
2023-12-04
Revised:
2024-01-11
Online:
2024-02-25
Published:
2024-04-10
Contact:
Yunlong ZHOU
摘要:
起伏振动下气液两相流型的准确判定对漂浮核电站参数设计有重要意义。对起伏振动水平管气液两相流型特性进行实验研究,定义了起伏振动新流型并得到了气液相分布变化规律,揭示了管径、振频和振幅对流型转变界限的影响规律,建立了泡状流-间歇流和间歇流/分层流-环状流的转变关系式。结果表明,在起伏振动下水平管内出现泡状流、间歇流、分层流以及环状流四种流型,其中间歇流包括泡-弹间歇和弹-塞间歇两种,且气液相分布随振动位置的变化呈规律性改变。在气相折算速度不变的条件下,管径、振频、振幅增加会使泡状流-间歇流边界向上移动,间歇流-分层流边界向下移动。在液相折算速度一定的条件下,管径、振频、振幅增加会使间歇流/分层流-环状流边界向右移动。考虑了振动的影响,建立适用于低频高幅起伏振动的间歇流向泡状流与环状流转变模型,预测和实验结果的相对误差绝对值的平均值分别为7.62%和12.68%。
中图分类号:
刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504.
Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration[J]. CIESC Journal, 2024, 75(2): 493-504.
测量参数 | 仪器 | 量程 | 精度 | 相对不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
水体积 | 量筒 | 2000 ml | 20 ml | 0.54~12.8 |
表1 测量仪器及不确定度
Table 1 Experimental instrument and uncertainty
测量参数 | 仪器 | 量程 | 精度 | 相对不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
水体积 | 量筒 | 2000 ml | 20 ml | 0.54~12.8 |
管径/mm | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
15~20 | 9.01 | 11.66 | 9.29 |
20~25 | 9.18 | 16.78 | 8.1 |
表2 管径对流型转变界限的影响
Table 2 Effect of pipe diameter on the transition boundary of the flow regimes
管径/mm | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
15~20 | 9.01 | 11.66 | 9.29 |
20~25 | 9.18 | 16.78 | 8.1 |
振频/Hz | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
0.42~0.70 | 6.02 | 11.34 | 6.55 |
0.70~0.98 | 5.82 | 10.8 | 6.15 |
表3 振动频率对流型转变界限的影响
Table 3 Effect of vibration frequency on the transition boundary of the flow regimes
振频/Hz | 液相折算速度平均变化率/% | 气相折算速度 平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
0.42~0.70 | 6.02 | 11.34 | 6.55 |
0.70~0.98 | 5.82 | 10.8 | 6.15 |
振幅/mm | 液相折算速度平均变化率/% | 气相折算速度平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
100~150 | 6.43 | 11.28 | 7.25 |
150~180 | 6.61 | 12.21 | 5.91 |
表4 振动幅度对流型转变界限的影响
Table 4 Effect of vibration amplitude on transition boundary of the flow regimes
振幅/mm | 液相折算速度平均变化率/% | 气相折算速度平均变化率/% | |
---|---|---|---|
泡状流-间歇流 | 间歇流-分层流 | 环状流边界 | |
100~150 | 6.43 | 11.28 | 7.25 |
150~180 | 6.61 | 12.21 | 5.91 |
图10 泡状流-间歇流转变界限实验值与理论预测值结果对比
Fig.10 Comparison of experimental and theoretical predicted values for the transition boundary between bubbly flow and intermittent flow
1 | 邹树梁, 葛馨, 黄燕. 海上浮动核电站发展现状及政策标准[J]. 舰船科学技术, 2019, 41(19): 80-83, 93. |
Zou S L, Ge X, Huang Y. Research on development status and policy standards of floating nuclear power plants at home and abroad[J]. Ship Science and Technology, 2019, 41(19): 80-83, 93. | |
2 | Ghadimi P, Paselar Bandari H, Bankhshandeh Rostami A. Determination of the heave and pitch motions of a floating cylinder by analytical solution of its diffraction problem and examination of the effects of geometric parameters on its dynamics in regular waves[J]. International Journal of Applied Mathematical Research, 2012, 1(4): 611-633. |
3 | 栾锋, 阎昌琪. 摇摆状态下水平管内气-水两相流的流型研究[J]. 核动力工程, 2007, 28(2): 19-23. |
Luan F, Yan C Q. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes[J]. Nuclear Power Engineering, 2007, 28(2): 19-23. | |
4 | 张金红, 阎昌琪, 方红宇, 等. 摇摆对水平管内气液两相流流型的影响[J]. 核科学与工程, 2007, 27(3): 206-212. |
Zhang J H, Yan C Q, Fang H Y, et al. Effects of rolling on gas-water two-phase flow in horizontal pipes[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27(3): 206-212. | |
5 | 张金红, 阎昌琪, 孙中宁. 摇摆状态下水平管内气液两相流流型转换研究[J]. 哈尔滨工程大学学报, 2008, 29(10): 1050-1053. |
Zhang J H, Yan C Q, Sun Z N. Investigation of flow pattern transition for gas-liquid two-phase flow in horizontal rolling pipes[J]. Journal of Harbin Engineering University, 2008, 29(10): 1050-1053. | |
6 | 栾锋, 阎昌琪, 曹夏昕. 摇摆对竖直管内气-水两相流流型的影响分析[J]. 工程热物理学报, 2007, 28(S1): 217-220. |
Luan F, Yan C Q, Cao X X. Analysis of the influence of rocking on the flow pattern of gas-water two-phase flow in vertical pipe[J]. Journal of Engineering Thermophysics, 2007, 28(S1): 217-220. | |
7 | 贾辉, 曹夏昕, 阎昌琪, 等. 摇摆状态下气液两相流流型转变的实验研究[J]. 核科学与工程, 2006, 26(3): 209-214, 198. |
Jia H, Cao X X, Yan C Q, et al. Experimental study on two-phase flow pattern transition in rolling tubes[J]. Chinese Journal of Nuclear Science and Engineering, 2006, 26(3): 209-214, 198. | |
8 | 阎昌琪, 于凯秋, 栾锋, 等. 摇摆对气-液两相流流型及空泡份额的影响[J]. 核动力工程, 2008, 29(4): 35-38, 49. |
Yan C Q, Yu K Q, Luan F, et al. Rolling effects on two-phase flow pattern and void friction[J]. Nuclear Power Engineering, 2008, 29(4): 35-38, 49. | |
9 | 王广飞, 阎昌琪, 曹夏昕, 等. 摇摆状态下窄矩形通道内两相流流型特性研究[J]. 原子能科学技术, 2011, 45(11): 1329-1333. |
Wang G F, Yan C Q, Cao X X, et al. Flow pattern characteristics of two-phase flow through narrow rectangular channel under rolling condition[J]. Atomic Energy Science and Technology, 2011, 45(11): 1329-1333. | |
10 | Xie T Z, Xu J J, Chen B D, et al. Upward two-phase flow patterns in vertical circular pipe under rolling condition[J]. Progress in Nuclear Energy, 2020, 129: 103506. |
11 | 谢添舟, 徐建军, 卓文彬, 等. 摇摆运动对弹状流向搅拌流转变边界的影响研究[J]. 原子能科学技术, 2020, 54(9): 1589-1594. |
Xie T Z, Xu J J, Zhuo W B, et al. Study on influence of rolling motion on transition boundary of slug flow to churn flow[J]. Atomic Energy Science and Technology, 2020, 54(9): 1589-1594. | |
12 | 谢添舟, 徐建军, 卓文彬, 等. 摇摆条件下弥散泡状流-泡状流转变准则模型验证[J]. 核动力工程, 2020, 41(S1): 22-26. |
Xie T Z, Xu J J, Zhuo W B, et al. Model verification of dispersive bubble flow-bubble flow transition criterion under rolling condition[J]. Nuclear Power Engineering, 2020, 41(S1): 22-26. | |
13 | 肖秀, 朱庆子, 王冠轶, 等. 振动工况下环管内气液两相流参数分布实验研究[J]. 原子能科学技术, 2017, 51(1): 19-26. |
Xiao X, Zhu Q Z, Wang G Y, et al. Experiment investigation on two-phase flow parameter distribution in annular channel vibration condition[J]. Atomic Energy Science and Technology, 2017, 51(1): 19-26. | |
14 | Wu X, Liu J W, Xu S M, et al. Effect of vibration parameters on the bubble absorption characteristics of working fluids R134a-DMAC in a vertical tube[J]. International Journal of Refrigeration, 2019, 99: 234-242. |
15 | 周云龙, 赵盘, 杨宁. 振动状态下水平管内气液两相流流型转变的实验研究[J]. 热能动力工程, 2017, 32(6): 17-22, 130. |
Zhou Y L, Zhao P, Yang N. Experimental study on flow pattern transition of gas liquid two-phase flow in horizontal tubes under vibration condition[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 17-22, 130. | |
16 | 周云龙, 常赫, 赵盘. 起伏振动状态下水平管内气液两相流研究[J]. 振动与冲击, 2019, 38(20): 1-6, 17. |
Zhou Y L, Chang H, Zhao P. A study on gas-liquid two-phase flow in a horizontal tube under heaving motion[J]. Journal of Vibration and Shock, 2019, 38(20): 1-6, 17. | |
17 | 周云龙, 汪俊超, 刘起超. 起伏非线性振动下倾斜上升管内气液两相流流型转变分析[J]. 原子能科学技术, 2020, 54(10): 1787-1794. |
Zhou Y L, Wang J C, Liu Q C. Analysis of gas-liquid two-phase flow pattern transition in inclined rising pipe under fluctuant nonlinear vibration condition[J]. Atomic Energy Science and Technology, 2020, 54(10): 1787-1794. | |
18 | 孙博, 周云龙, 刘启超. 横向振动下水平通道内气液两相流型研究[J]. 振动与冲击, 2021, 40(20): 302-306. |
Sun B, Zhou Y L, Liu Q C. A study on flow regime of gas-liquid two-phase in a horizontal channel under transverse vibration[J]. Journal of Vibration and Shock, 2021, 40(20): 302-306. | |
19 | Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. |
20 | Taitel Y, Dukler A E. A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes[J]. International Journal of Multiphase Flow, 1977, 3(6): 585-596. |
21 | Weisman J, Duncan D, Gibson J, et al. Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines[J]. International Journal of Multiphase Flow, 1979, 5(6): 437-462. |
22 | Barnea D, Shoham O, Taitel Y, et al. Gas-liquid flow in inclined tubes: flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1): 131-136. |
23 | Barnea D. Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5): 733-744. |
24 | Lin P Y, Hanratty T J. Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1987, 13(4): 549-563. |
25 | Woods B D, Hanratty T J. Relation of slug stability to shedding rate[J]. International Journal of Multiphase Flow, 1996, 22(5): 809-828. |
26 | Kokal S L, Stanislav J F. An experimental study of two-phase flow in slightly inclined pipes(1): Flow patterns[J]. Chemical Engineering Science, 1989, 44(3): 665-679. |
27 | Nie T F, Xu Q, She Y L, et al. The behavior of surface nanobubbles on different substrates in electrochemistry[J]. Journal of Molecular Liquids, 2024, 394: 123791. |
28 | Hong A Y, Xu Q, Jiang S Z, et al. Experimental study of interface behavior and sound pressure oscillation of direct contact condensation of a steam jet in flowing water[J]. Experimental Thermal and Fluid Science, 2024, 150: 111054. |
29 | Massel S R. Ocean Surface Waves: Their Physics and Prediction[M]. Singapore: World Scientific, 1996. |
30 | Yang C Y, Xu Q, Chang L, et al. Interstage performance and power consumption of a multistage mixed-flow electrical submersible pump in gas-liquid conditions: an experimental study[J]. ASME. Journal of Fluids Engineering, 2024, 146(5): 051203. |
31 | Xue Y Q, Li H X, Hao C Y, et al. Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes[J]. International Communications in Heat and Mass Transfer, 2016, 77: 1-8. |
32 | 陆廷济. 物理实验教程[M]. 上海: 同济大学出版社, 2000: 14-15. |
Lu T J. Physical Experiment Course[M]. Shanghai: Tongji University Press, 2000: 14-15. | |
33 | 周云龙, 李珊珊. 起伏振动状态下倾斜管气液两相流型实验研究[J]. 原子能科学技术, 2018, 52(2): 262-268. |
Zhou Y L, Li S S. Experiment investigation on gas-liquid two-phase flow pattern in inclined pipe under fluctuant vibration condition[J]. Atomic Energy Science and Technology, 2018, 52(2): 262-268. | |
34 | Barnea D. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1): 1-12. |
35 | Fang X D, Xu Y, Zhou Z R. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations[J]. Nuclear Engineering and Design, 2011, 241(3): 897-902. |
36 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. |
[1] | 蒙西, 王岩, 孙子健, 乔俊飞. 基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测[J]. 化工学报, 2024, 75(2): 593-603. |
[2] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[3] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[4] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[5] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[6] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[7] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[8] | 尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365. |
[9] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[10] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[11] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[12] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[13] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[14] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||