化工学报 ›› 2024, Vol. 75 ›› Issue (2): 439-449.DOI: 10.11949/0438-1157.20231295
孙瑞1(), 田华1(
), 吴子睿2, 孙孝存2, 舒歌群1,2
收稿日期:
2023-12-04
修回日期:
2024-01-09
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
田华
作者简介:
孙瑞(1996—),男,博士研究生,ruisun@tju.edu.cn
基金资助:
Rui SUN1(), Hua TIAN1(
), Zirui WU2, Xiaocun SUN2, Gequn SHU1,2
Received:
2023-12-04
Revised:
2024-01-09
Online:
2024-02-25
Published:
2024-04-10
Contact:
Hua TIAN
摘要:
二氧化碳(CO2)混合工质是具有应用潜力的动力循环工质,临界参数作为CO2混合工质的关键基础热物性,对其进行准确地计算和预测具有重要意义。采用4种不同类型的计算模型,分别针对CO2+HFC、CO2+HFO和CO2+HC三类二元混合工质的临界温度和临界压力进行了推算,并与公开发表的实验数据和REFPROP数据库计算结果进行对比,分析讨论了各种计算方法对各类CO2混合工质的适用性。结果表明,Li方法形式简单,混合物临界温度的计算式仅与纯质组分的临界温度及临界体积有关,可用于CO2+HFC和CO2+HFO混合工质临界温度的快速推算。对于CO2+HC混合工质,RK方法计算偏差最小,该类混合物临界参数实验数据点数和套数较多,因此可直接通过RK方法回归得到关联式进行应用。
中图分类号:
孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449.
Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid[J]. CIESC Journal, 2024, 75(2): 439-449.
混合工质 | CO2摩尔分数 | 点数 | 文献 |
---|---|---|---|
CO2+HFC-32 | 0.18~0.84 | 25 | [ |
0~1 | [ | ||
0~1 | [ | ||
CO2+HFC-134a | 0~1 | 10 | [ |
CO2+HFC-152a① | 0~1 | 11 | [ |
CO2+HFO-1234yf | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1234ze(E) | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1243zf | 0~1 | 11 | [ |
CO2+丙烷 | 0.152~0.939 | 38 | [ |
0.407~0.795 | [ | ||
0.13~0.92 | [ | ||
0.9015~1 | [ | ||
0.1394~0.78 | [ | ||
0~1 | [ | ||
CO2+正丁烷 | 0.139~0.861 | 40 | [ |
0.188~0.831 | [ | ||
0.914~1 | [ | ||
0.51~0.875 | [ | ||
0.088~0.839 | [ | ||
0~1 | [ | ||
CO2+异丁烷 | 0~1 | 8 | [ |
表1 CO2混合工质临界参数实验数据
Table 1 Experimental data on critical point of CO2 mixtures
混合工质 | CO2摩尔分数 | 点数 | 文献 |
---|---|---|---|
CO2+HFC-32 | 0.18~0.84 | 25 | [ |
0~1 | [ | ||
0~1 | [ | ||
CO2+HFC-134a | 0~1 | 10 | [ |
CO2+HFC-152a① | 0~1 | 11 | [ |
CO2+HFO-1234yf | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1234ze(E) | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1243zf | 0~1 | 11 | [ |
CO2+丙烷 | 0.152~0.939 | 38 | [ |
0.407~0.795 | [ | ||
0.13~0.92 | [ | ||
0.9015~1 | [ | ||
0.1394~0.78 | [ | ||
0~1 | [ | ||
CO2+正丁烷 | 0.139~0.861 | 40 | [ |
0.188~0.831 | [ | ||
0.914~1 | [ | ||
0.51~0.875 | [ | ||
0.088~0.839 | [ | ||
0~1 | [ | ||
CO2+异丁烷 | 0~1 | 8 | [ |
工质 | 名称 | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|
CO2 | 二氧化碳 | 304.13 | 7.377 | 94.118 | 0.224 |
HFC-32 | 二氟甲烷 | 351.26 | 5.782 | 122.698 | 0.277 |
HFC-134a | 1,1,1,2-四氟乙烷 | 374.21 | 4.059 | 199.320 | 0.327 |
HFC-152a | 1,1-二氟乙烷 | 386.41 | 4.517 | 179.486 | 0.275 |
HFO-1234yf | 2,3,3,3-四氟丙烯 | 367.85 | 3.382 | 239.808 | 0.276 |
HFO-1234ze(E) | 反式-1,3,3,3-四氟丙烯 | 382.51 | 3.635 | 233.100 | 0.313 |
HFO-1243zf | 3,3,3-三氟丙烯 | 376.93 | 3.518 | 232.558 | 0.260 |
丙烷 | 丙烷 | 369.89 | 4.251 | 200.000 | 0.152 |
丁烷 | 正丁烷 | 425.13 | 3.796 | 254.922 | 0.201 |
异丁烷 | 2-甲基丙烷 | 407.81 | 3.629 | 257.748 | 0.184 |
表2 本文研究中各纯质的基本参数[38]
Table 2 Fundamental properties of pure substances[38]
工质 | 名称 | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|
CO2 | 二氧化碳 | 304.13 | 7.377 | 94.118 | 0.224 |
HFC-32 | 二氟甲烷 | 351.26 | 5.782 | 122.698 | 0.277 |
HFC-134a | 1,1,1,2-四氟乙烷 | 374.21 | 4.059 | 199.320 | 0.327 |
HFC-152a | 1,1-二氟乙烷 | 386.41 | 4.517 | 179.486 | 0.275 |
HFO-1234yf | 2,3,3,3-四氟丙烯 | 367.85 | 3.382 | 239.808 | 0.276 |
HFO-1234ze(E) | 反式-1,3,3,3-四氟丙烯 | 382.51 | 3.635 | 233.100 | 0.313 |
HFO-1243zf | 3,3,3-三氟丙烯 | 376.93 | 3.518 | 232.558 | 0.260 |
丙烷 | 丙烷 | 369.89 | 4.251 | 200.000 | 0.152 |
丁烷 | 正丁烷 | 425.13 | 3.796 | 254.922 | 0.201 |
异丁烷 | 2-甲基丙烷 | 407.81 | 3.629 | 257.748 | 0.184 |
混合工质 | kij |
---|---|
CO2+HFC-32 | -0.015 |
CO2+HFC-134a | 0.017 |
CO2+HFC-152a | 0.015 |
CO2+HFO-1234yf | 0.022 |
CO2+HFO-1234ze(E) | 0.035 |
CO2+HFO-1243zf | 0.020 |
CO2+丙烷 | 0.100 |
CO2+正丁烷 | 0.150 |
CO2+异丁烷 | 0.125 |
表3 Chueh-Prausnitz(CP)方法的二元交互作用参数kij
Table 3 Binary interaction parameters of Chueh-Prausnitz (CP) method
混合工质 | kij |
---|---|
CO2+HFC-32 | -0.015 |
CO2+HFC-134a | 0.017 |
CO2+HFC-152a | 0.015 |
CO2+HFO-1234yf | 0.022 |
CO2+HFO-1234ze(E) | 0.035 |
CO2+HFO-1243zf | 0.020 |
CO2+丙烷 | 0.100 |
CO2+正丁烷 | 0.150 |
CO2+异丁烷 | 0.125 |
混合工质 | 参数 | i | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
CO2+HFC-32 | ci | 19.992 | 11.564 | -86.780 | 234.360 | -284.363 | 131.804 |
di | 0.050 | -0.213 | 0.302 | 0.316 | -1.109 | 0.720 | |
CO2+HFC-134a | ci | 49.094 | 53.934 | -250.929 | 683.153 | -834.737 | 391.168 |
di | 0.209 | -1.360 | 4.016 | -5.897 | 3.931 | -0.837 | |
CO2+HFC-152a | ci | 48.274 | 93.808 | -346.395 | 813.068 | -960.045 | 440.489 |
di | 0.135 | -0.577 | 0.746 | 0.496 | -2.034 | 1.298 | |
CO2+HFO-1234yf | ci | 100.092 | -60.854 | 147.436 | 134.445 | -586.749 | 390.412 |
di | 0.243 | -1.573 | 5.216 | -9.177 | 7.703 | -2.393 | |
CO2+HFO-1234ze(E) | ci | 77.751 | -15.252 | -39.746 | 517.360 | -868.373 | 475.568 |
di | 0.277 | -2.319 | 8.529 | -15.494 | 13.353 | -4.340 | |
CO2+HFO-1243zf | ci | 98.126 | 64.441 | -299.780 | 906.444 | -1253.048 | 614.351 |
di | -8.936 | 19.701 | -28.049 | -49.576 | 146.804 | -91.540 | |
CO2+丙烷 | ci | 48.580 | -169.524 | 533.658 | -1211.609 | 1045.265 | -320.067 |
di | 0.135 | -1.066 | 3.737 | -7.371 | 7.463 | -2.816 | |
CO2+丁烷 | ci | 69.746 | -182.626 | 1168.023 | -2414.712 | 1902.741 | -543.175 |
di | 0.236 | -1.530 | 5.760 | -11.550 | 10.599 | -3.417 | |
CO2+异丁烷 | ci | 96.779 | -258.365 | 1051.786 | -1945.810 | 1443.448 | -386.902 |
di | 0.278 | -2.431 | 9.252 | -17.703 | 15.902 | -5.222 |
表4 REFPROP物性数据库临界参数计算方程系数
Table 4 Coefficients of REFPROP on critical property calculation
混合工质 | 参数 | i | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
CO2+HFC-32 | ci | 19.992 | 11.564 | -86.780 | 234.360 | -284.363 | 131.804 |
di | 0.050 | -0.213 | 0.302 | 0.316 | -1.109 | 0.720 | |
CO2+HFC-134a | ci | 49.094 | 53.934 | -250.929 | 683.153 | -834.737 | 391.168 |
di | 0.209 | -1.360 | 4.016 | -5.897 | 3.931 | -0.837 | |
CO2+HFC-152a | ci | 48.274 | 93.808 | -346.395 | 813.068 | -960.045 | 440.489 |
di | 0.135 | -0.577 | 0.746 | 0.496 | -2.034 | 1.298 | |
CO2+HFO-1234yf | ci | 100.092 | -60.854 | 147.436 | 134.445 | -586.749 | 390.412 |
di | 0.243 | -1.573 | 5.216 | -9.177 | 7.703 | -2.393 | |
CO2+HFO-1234ze(E) | ci | 77.751 | -15.252 | -39.746 | 517.360 | -868.373 | 475.568 |
di | 0.277 | -2.319 | 8.529 | -15.494 | 13.353 | -4.340 | |
CO2+HFO-1243zf | ci | 98.126 | 64.441 | -299.780 | 906.444 | -1253.048 | 614.351 |
di | -8.936 | 19.701 | -28.049 | -49.576 | 146.804 | -91.540 | |
CO2+丙烷 | ci | 48.580 | -169.524 | 533.658 | -1211.609 | 1045.265 | -320.067 |
di | 0.135 | -1.066 | 3.737 | -7.371 | 7.463 | -2.816 | |
CO2+丁烷 | ci | 69.746 | -182.626 | 1168.023 | -2414.712 | 1902.741 | -543.175 |
di | 0.236 | -1.530 | 5.760 | -11.550 | 10.599 | -3.417 | |
CO2+异丁烷 | ci | 96.779 | -258.365 | 1051.786 | -1945.810 | 1443.448 | -386.902 |
di | 0.278 | -2.431 | 9.252 | -17.703 | 15.902 | -5.222 |
二元系 | 混合工质 | AAD(Tc)/% | |||
---|---|---|---|---|---|
Li | CP | RK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.15 | 0.15 | 0.08 | 0.40 |
CO2+HFC-134a | 1.14 | 0.81 | 0.13 | 1.45 | |
CO2+HFC-152a | 0.09 | 0.19 | 0.06 | 0.57 | |
CO2+HFO-1234yf | 0.69 | 0.23 | 0.13 | 2.28 | |
CO2+HFO-1234ze(E) | 0.47 | 0.14 | 0.14 | 1.29 | |
CO2+HFO-1243zf | 0.76 | 0.44 | 0.19 | 2.63 | |
平均值 | 0.55 | 0.33 | 0.12 | 1.44 | |
CO2+HC | CO2+丙烷 | 2.76 | 0.67 | 0.24 | 0.43 |
CO2+正丁烷 | 3.46 | 0.84 | 0.28 | 0.64 | |
CO2+异丁烷 | 2.82 | 0.98 | 0.34 | 0.73 | |
平均值 | 3.01 | 0.83 | 0.29 | 0.60 |
表5 不同方法对各混合工质临界温度计算结果的平均相对偏差AAD(Tc)
Table 5 Average absolute deviation of critical temperature AAD(Tc) by each model
二元系 | 混合工质 | AAD(Tc)/% | |||
---|---|---|---|---|---|
Li | CP | RK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.15 | 0.15 | 0.08 | 0.40 |
CO2+HFC-134a | 1.14 | 0.81 | 0.13 | 1.45 | |
CO2+HFC-152a | 0.09 | 0.19 | 0.06 | 0.57 | |
CO2+HFO-1234yf | 0.69 | 0.23 | 0.13 | 2.28 | |
CO2+HFO-1234ze(E) | 0.47 | 0.14 | 0.14 | 1.29 | |
CO2+HFO-1243zf | 0.76 | 0.44 | 0.19 | 2.63 | |
平均值 | 0.55 | 0.33 | 0.12 | 1.44 | |
CO2+HC | CO2+丙烷 | 2.76 | 0.67 | 0.24 | 0.43 |
CO2+正丁烷 | 3.46 | 0.84 | 0.28 | 0.64 | |
CO2+异丁烷 | 2.82 | 0.98 | 0.34 | 0.73 | |
平均值 | 3.01 | 0.83 | 0.29 | 0.60 |
二元系 | 混合工质 | AAD(pc)/% | |||||
---|---|---|---|---|---|---|---|
CP | CP (kij =0) | RK | Li+KK | CP+KK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.56 | 3.16 | 0.47 | 2.64 | 2.30 | 0.57 |
CO2+HFC-134a | 1.38 | 2.79 | 0.57 | 8.57 | 6.41 | 5.22 | |
CO2+HFC-152a | 0.69 | 2.07 | 0.25 | 3.47 | 1.81 | 3.19 | |
CO2+HFO-1234yf | 0.91 | 4.14 | 0.24 | 14.02 | 10.77 | 13.11 | |
CO2+HFO-1234ze(E) | 0.67 | 6.46 | 0.62 | 13.91 | 10.34 | 7.56 | |
CO2+HFO-1243zf | 1.29 | 3.99 | 0.74 | 12.22 | 9.09 | 13.12 | |
平均值 | 0.92 | 3.77 | 0.48 | 9.14 | 6.79 | 7.13 | |
CO2+HC | CO2+丙烷 | 4.75 | 15.83 | 1.79 | 9.16 | 6.20 | 2.39 |
CO2+正丁烷 | 5.89 | 24.94 | 1.46 | 14.75 | 5.38 | 1.64 | |
CO2+异丁烷 | 4.68 | 24.91 | 0.14 | 15.43 | 5.30 | 4.98 | |
平均值 | 5.10 | 21.89 | 1.13 | 13.11 | 5.63 | 3.00 |
表6 不同方法对各混合工质临界压力计算结果的平均相对偏差AAD(pc)
Table 6 Average absolute deviation of critical pressure AAD(pc) by each model
二元系 | 混合工质 | AAD(pc)/% | |||||
---|---|---|---|---|---|---|---|
CP | CP (kij =0) | RK | Li+KK | CP+KK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.56 | 3.16 | 0.47 | 2.64 | 2.30 | 0.57 |
CO2+HFC-134a | 1.38 | 2.79 | 0.57 | 8.57 | 6.41 | 5.22 | |
CO2+HFC-152a | 0.69 | 2.07 | 0.25 | 3.47 | 1.81 | 3.19 | |
CO2+HFO-1234yf | 0.91 | 4.14 | 0.24 | 14.02 | 10.77 | 13.11 | |
CO2+HFO-1234ze(E) | 0.67 | 6.46 | 0.62 | 13.91 | 10.34 | 7.56 | |
CO2+HFO-1243zf | 1.29 | 3.99 | 0.74 | 12.22 | 9.09 | 13.12 | |
平均值 | 0.92 | 3.77 | 0.48 | 9.14 | 6.79 | 7.13 | |
CO2+HC | CO2+丙烷 | 4.75 | 15.83 | 1.79 | 9.16 | 6.20 | 2.39 |
CO2+正丁烷 | 5.89 | 24.94 | 1.46 | 14.75 | 5.38 | 1.64 | |
CO2+异丁烷 | 4.68 | 24.91 | 0.14 | 15.43 | 5.30 | 4.98 | |
平均值 | 5.10 | 21.89 | 1.13 | 13.11 | 5.63 | 3.00 |
11 | Peng D Y, Robinson D B. A rigorous method for predicting the critical properties of multicomponent systems from an equation of state[J]. AIChE Journal, 1977, 23(2): 137-144. |
12 | 陈振华, 曹堃, 姚臻, 等. 基于PR状态方程的二元体系临界性质计算中不同混合规则对比[J]. 高校化学工程学报, 2008, 22(3): 365-370. |
Chen Z H, Cao K, Yao Z, et al. Comparison of different mixing rules in the calculation of critical properties for binary mixtures based on PR equation of state[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 365-370. | |
13 | Castier M, Sandler S I. Critical points with the Wong-Sandler mixing rule(Ⅱ): Calculations with a modified Peng-Robinson equation of state[J]. Chemical Engineering Science, 1997, 52(20): 3579-3588. |
14 | 张楠, 陈龙祥, 胡芃. 混合工质临界性质的推算研究[J]. 化工学报, 2019, 70(S2): 1-7. |
Zhang N, Chen L X, Hu P. Theoretical study on critical properties of 4 kinds of binary systems[J]. CIESC Journal, 2019, 70(S2): 1-7. | |
15 | Li C C. Critical temperature estimation for simple mixtures[J]. The Canadian Journal of Chemical Engineering, 1971, 49(5): 709-710. |
16 | Kreglewski A, Kay W B. Critical constants of conformed mixtures[J]. The Journal of Physical Chemistry, 1969, 73(10): 3359-3366. |
17 | Chueh P L, Prausnitz J M. Vapor-liquid equilibria at high pressures: calculation of critical temperatures, volumes, and pressures of nonpolar mixtures[J]. AIChE Journal, 1967, 13(6): 1107-1113. |
18 | Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Industrial & Engineering Chemistry, 1948, 40(2): 345-348. |
19 | Kordikowski A, Robertson D G, Poliakoff M, et al. Acoustic determination of the critical surfaces in the ternary systems CO2 + CH2F2 + CF3CH2F and CO + C2H4 + CH3CHCH2 and in their binary subsystems[J]. The Journal of Physical Chemistry B, 1997, 101(30): 5853-5862. |
20 | Diefenbacher A, Türk M. (Vapour + liquid) equilibria of binary mixtures of CO2, CH2F2, CHF3, and SF6 [J]. The Journal of Chemical Thermodynamics, 2002, 34(9): 1361-1375. |
21 | Rivollet F, Chapoy A, Coquelet C, et al. Vapor-liquid equilibrium data for the carbon dioxide (CO2) + difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa[J]. Fluid Phase Equilibria, 2004, 218(1): 95-101. |
22 | Kordikowski A, Robertson D G, Aguiar-Ricardo A I, et al. Probing vapor/liquid equilibria of near-critical binary gas mixtures by acoustic measurements[J]. The Journal of Physical Chemistry, 1996, 100(22): 9522-9526. |
23 | Madani H, Valtz A, Coquelet C, et al. (Vapor + liquid) equilibrium data for (carbon dioxide + 1, 1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa[J]. The Journal of Chemical Thermodynamics, 2008, 40(10): 1490-1494. |
24 | Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor–liquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures[J]. International Journal of Refrigeration, 2014, 47: 141-152. |
25 | Yao X Y, Shen J, Kang H F, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1234yf (2, 3, 3, 3-tetrafluoropro-1-ene)[J]. The Journal of Chemical Thermodynamics, 2023, 178: 106978. |
26 | Yao X Y, Shen J, Kang H F, et al. Measurement of critical properties for the binary mixture of R744 (carbon dioxide) + R1234ze(E) (trans-1, 3, 3, 3-tetrafluoropropene)[J]. International Journal of Refrigeration, 2023, 152: 369-375. |
27 | Yao X Y, Dong X Q, Zhao Y X, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1243zf (3, 3, 3-trifluoropropene)[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2128-2135. |
28 | Poettmann F H, Katz D L. Phase behavior of binary carbon dioxide-paraffin systems[J]. Industrial & Engineering Chemistry, 1945, 37(9): 847-853. |
29 | Reamer H H, Sage B H, Lacey W N. Phase equilibria in hydrocarbon systems. volumetric and phase behavior of the propane-carbon dioxide system[J]. Industrial & Engineering Chemistry, 1951, 43(11): 2515-2520. |
30 | Roof J G, Baron J D. Critical loci of binary mixtures of propane with methane, carbon dioxide, and nitrogen[J]. Journal of Chemical & Engineering Data, 1967, 12(3): 292-293. |
31 | Morrison G, Kincaid J M. Critical point measurements on nearly polydisperse fluids[J]. AIChE Journal, 1984, 30(2): 257-262. |
32 | Niesen V G, Rainwater J C. Critical locus, (vapor + liquid) equilibria, and coexisting densities of (carbon dioxide + propane) at temperatures from 311 K to 361 K[J]. The Journal of Chemical Thermodynamics, 1990, 22(8): 777-795. |
1 | Xu J L, Liu C, Sun E H, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831. |
2 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
3 | Yu A F, Su W, Lin X X, et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53(3): 699-714. |
4 | White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. |
5 | 杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29. |
Yang F F, Liu H T, Yang Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29. | |
6 | Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. |
7 | Shu G Q, Yu Z G, Tian H, et al. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for waste heat recovery[J]. Energy Conversion and Management, 2018, 174: 668-685. |
8 | Xia J X, Wang J F, Zhang G, et al. Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids[J]. Applied Thermal Engineering, 2018, 144: 31-44. |
9 | Heidemann R A, Khalil A M. The calculation of critical points[J]. AIChE Journal, 1980, 26(5): 769-779. |
10 | Michelsen M L, Heidemann R A. Calculation of critical points from cubic two-constant equations of state[J]. AIChE Journal, 1981, 27(3): 521-523. |
33 | Juntarachat N, Bello S, Privat R, et al. Validation of a new apparatus using the dynamic method for determining the critical properties of binary gas/gas mixtures[J]. Journal of Chemical & Engineering Data, 2013, 58(3): 671-676. |
34 | Olds R H, Reamer H H, Sage B H, et al. The n-butane-carbon dioxide system[J]. Industrial & Engineering Chemistry, 1949, 41(3): 475-482. |
35 | Hsu J J C, Nagarajan N, Robinson R L. Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems(1): Carbon dioxide + n-butane[J]. Journal of Chemical & Engineering Data, 1985, 30(4): 485-491. |
36 | Pozo de Fernandez M E, Zollweg J A, Streett W B. Vapor-liquid equilibrium in the binary system carbon dioxide + n-butane[J]. Journal of Chemical & Engineering Data, 1989, 34(3): 324-328. |
37 | Li J F, Qin Z F, Wang G F, et al. Critical temperatures and pressures of several binary and ternary mixtures concerning the alkylation of 2-methylpropane with 1-butene in the presence of methane or carbon dioxide[J]. Journal of Chemical & Engineering Data, 2007, 52(5): 1736-1740. |
38 | Lemmon E W, Bell I H, Huber M L, et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0[DB/OL]. (2018-05-21)[2023-12-27]. . |
39 | Poling B E, Prausnitz J M, O'Connell J P. The Properties of Gases and Liquids[M]. 5th ed. New York: McGraw-Hill, 2001. |
40 | Najafi H, Maghbooli B, Sobati M A. Prediction of true critical pressure of multi-component mixtures: extending fast estimation methods[J]. Thermochimica Acta, 2017, 655: 155-168. |
41 | 何茂刚, 王成杰, 辛楠, 等. 碳酸二甲酯与烷烃混合物的临界性质[J]. 工程热物理学报, 2018, 39(6): 1181-1185. |
He M G, Wang C J, Xin N, et al. The critical properties of dimethyl carbonate (DMC) + alkanes mixtures[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1181-1185. | |
42 | Soo C B, Théveneau P, Coquelet C, et al. Determination of critical properties of pure and multi-component mixtures using a “dynamic-synthetic” apparatus[J]. The Journal of Supercritical Fluids, 2010, 55(2): 545-553. |
43 | He M G, Xin N, Liu Y, et al. Determination of critical properties for binary and ternary mixtures of short chain alcohols and alkanes using a flow apparatus[J]. The Journal of Supercritical Fluids, 2015, 104: 19-28. |
44 | Liu Y, Zhang Y, He M G, et al. Determination of the critical properties of C6—C10 n-alkanes and their binary systems using a flow apparatus[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3852-3857. |
45 | He M G, Xin N, Wang C J, et al. Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus[J]. The Journal of Chemical Thermodynamics, 2016, 101: 35-43. |
46 | Bell I H, Jäger A. Calculation of critical points from Helmholtz-energy-explicit mixture models[J]. Fluid Phase Equilibria, 2017, 433: 159-173. |
47 | Raabe G. Molecular simulation studies on the vapor–liquid phase equilibria of binary mixtures of R-1234yf and R-1234ze(E) with R-32 and CO2 [J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1867-1873. |
48 | Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3032-3091. |
[1] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[2] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
[3] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[4] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
[5] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[6] | 张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119. |
[7] | 钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[10] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[11] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[12] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[13] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||