化工学报 ›› 2024, Vol. 75 ›› Issue (2): 450-462.DOI: 10.11949/0438-1157.20231028
收稿日期:
2023-10-07
修回日期:
2024-01-16
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
彭旭东
作者简介:
吴凡(1998—),男,博士研究生,zjutwf@126.com
基金资助:
Fan WU(), Xudong PENG(
), Jinbo JIANG, Xiangkai MENG, Yangyang LIANG
Received:
2023-10-07
Revised:
2024-01-16
Online:
2024-02-25
Published:
2024-04-10
Contact:
Xudong PENG
摘要:
天然气作为相对清洁、低碳的能源,在我国的一次能源消费占比持续增长,其物性的精准预测对天然气集输利用过程分析至关重要。通过收集文献中天然气在不同温度和压力下的物性实测数据,对比分析了分子动力学模拟和常用经验模型计算天然气密度和黏度的预测精度,明确了不同组成天然气适用的最佳物性预测模型。结果表明,分子动力学模拟在预测天然气黏度方面具有较强的适用性,尤其是在高温高压条件下,当温度为444.4 K时,平均相对误差小于5%;天然气密度则采用现有相对成熟的经验模型更合适,而采用分子动力学模拟方法的几种力场模型预测其精度均不高;天然气密度和黏度预测模型的预测精度,不仅受温度和压力范围的影响,还与天然气组成有关。
中图分类号:
吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462.
Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas[J]. CIESC Journal, 2024, 75(2): 450-462.
组分 | 含量/% |
---|---|
N2 | 0.3 |
CO2 | 0.6 |
CH4 | 96.5 |
C2H6 | 1.8 |
C3H8 | 0.45 |
C4H10 | 0.2 |
C5H12 | 0.08 |
C6H14 | 0.07 |
表1 天然气组成
Table 1 Composition of natural gas
组分 | 含量/% |
---|---|
N2 | 0.3 |
CO2 | 0.6 |
CH4 | 96.5 |
C2H6 | 1.8 |
C3H8 | 0.45 |
C4H10 | 0.2 |
C5H12 | 0.08 |
C6H14 | 0.07 |
图7 缺省样品下不同压力和温度时两种MD力场密度预测值对比
Fig.7 Comparison of two MD force field density prediction values at different pressure and temperature with default sample
图8 缺省样品下不同压力和温度时MD及经验公式密度预测相对误差
Fig.8 The relative error of MD and empirical formula predicting density at different pressure and temperature with default sample
组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % |
---|---|---|---|---|---|---|---|
N2 | 0.772 | CH4 | 98.626 | C2H6 | 0.517 | C3H8 | 0.033 |
C4H10 | 0.008 | i-C5H12 | 0.003 | n-C5H12 | 0.002 | C6H14 | 0.035 |
C7H16 | 0.002 | C10H22 | 0.001 |
表2 天然气组成
Table 2 Composition of natural gas
组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % |
---|---|---|---|---|---|---|---|
N2 | 0.772 | CH4 | 98.626 | C2H6 | 0.517 | C3H8 | 0.033 |
C4H10 | 0.008 | i-C5H12 | 0.003 | n-C5H12 | 0.002 | C6H14 | 0.035 |
C7H16 | 0.002 | C10H22 | 0.001 |
图13 高非烃样品在不同压力和温度时MD及经验公式黏度预测相对误差
Fig.13 The relative error of MD and empirical formula predicting viscosity at different pressure and temperature with high non-hydrocarbon sample
组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % |
---|---|---|---|---|---|---|---|
N2 | 1.8 | CO2 | 4.0 | CH4 | 71.5 | C2H6 | 11.0 |
C3H8 | 6.5 | n-C4H10 | 1.9 | i-C4H10 | 0.9 | n-C5H12 | 0.4 |
i-C5H12 | 0.4 | H2S | 1.6 |
表3 高非烃样品组成
Table 3 Composition of high non-hydrocarbon sample
组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % | 组分 | 含量/ % |
---|---|---|---|---|---|---|---|
N2 | 1.8 | CO2 | 4.0 | CH4 | 71.5 | C2H6 | 11.0 |
C3H8 | 6.5 | n-C4H10 | 1.9 | i-C4H10 | 0.9 | n-C5H12 | 0.4 |
i-C5H12 | 0.4 | H2S | 1.6 |
1 | 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182. |
Zhou S H, Wang J, Liang Y. Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(2): 171-182. | |
2 | 周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8. |
Zhou S W, Zhu J L. Exploration of ways to helping “Carbon Peak and Neutrality” strategy[J]. Natural Gas Industry, 2021, 41(12): 1-8. | |
3 | 张露, 税蕾蕾, 张旭东, 等. CO2含量对天然气高压物性及烃-水相平衡的影响[J]. 石油化工应用, 2021, 40(4): 48-54. |
Zhang L, Shui L L, Zhang X D, et al. Effects of CO2 content on high pressure physical properties and hydrocarbon-water equilibrium of natural gas[J]. Petrochemical Industry Application, 2021, 40(4): 48-54. | |
4 | 任世林, 李毓, 王本成, 等. 超深层高含硫气藏产出流体物性变化规律[C]//第32届全国天然气学术年会. 重庆, 2020: 764-776. |
Ren S L, Li Y, Wang B C, et al. Variation law of physical properties of produced fluid in ultra-deep high-sulfur gas reservoirs[C]// Proceedings of the 32nd National Natural Gas Academic Annual Conference (2020). Chongqing, 2020: 764-776. | |
5 | 张国芳, 陈涛平, 杨昭, 等. 气藏注CO2天然气物性参数变化规律实验研究[J]. 中国石油和化工标准与质量, 2021, 41(24): 42-44. |
Zhang G F, Chen T P, Yang Z, et al. Experimental study on variation law of physical parameters of CO2 injected natural gas in gas reservoir[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(24): 42-44. | |
6 | Guo P, Wen Y F, Wang Z H, et al. Microscopic mechanism of variations in physical parameters of natural gas containing CO2 at ultrahigh temperature and high pressure[J]. ACS omega, 2022, 7(6): 5366-5375. |
7 | 刘丽丽, 代威, 杨智, 等. 超临界态二氧化碳流体热力学性质的分子动力学模拟[J]. 低温工程, 2022(4): 70-75. |
Liu L L, Dai W, Yang Z, et al. Thermodynamic property prediction of supercritical CO2 fluid by molecular dynamics simulation[J]. Cryogenics, 2022(4): 70-75. | |
8 | Yang X M, Tao J W, Liu Q, et al. Molecular dynamics simulation of thermophysical properties of binary RP-3 surrogate fuel mixtures containing trimethylbenzene, n-decane, and n-dodecane[J]. Journal of Molecular Liquids, 2022, 359: 119258. |
9 | 张英男, 李汝传, 于顺昌, 等. 基于深层原油物性模拟的分子力场优选及验证[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 162-169. |
Zhang Y N, Li R C, Yu S C, et al. Screening and verification of molecular force field based on physical property simulation of deep oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 162-169. | |
10 | Jin L C, He Y M, Zhou G B, et al. Natural gas density under extremely high pressure and high temperature: comparison of molecular dynamics simulation with corresponding state model[J]. Chinese Journal of Chemical Engineering, 2021, 31(3): 2-9. |
11 | Daan F, Smit B. Understanding Molecular Simulation: From Algorithms to Applications[M]. World Publishing Corporation, 2010. |
12 | Allen M P, Tildesley D J, Banavar J R. Computer simulation of liquids[J]. Physics Today, 1989, 42(3): 105-106. |
13 | Van Gunsteren W F, Berendsen H J C. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry[J]. Angewandte Chemie International Edition, 1990, 29(9): 992-1023. |
14 | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
Chen Y G, Chen H, Huang Y S. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations[J]. CIESC Journal, 2022, 73(7): 2844-2857. | |
15 | 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263. |
Li B F, Liu G, Chen L. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation[J]. CIESC Journal, 2021, 72(3): 1253-1263. | |
16 | Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B, 1998, 102(38): 7338-7364. |
17 | Rigby D, Sun H, Eichinger B E. Computer simulations of poly(ethylene oxide): force field, PVT diagram and cyclization behaviour[J]. Polymer International, 1997, 44(3): 311-330. |
18 | Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. |
19 | Dauber-Osguthorpe P, Roberts V A, Osguthorpe D J, et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins, 1988, 4(1): 31-47. |
20 | Sun H, Mumby S J, Maple J R, et al. An ab initio CFF93 all-atom force field for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978-2987. |
21 | Sun H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28(3): 701-712. |
22 | 冯飙. 面向中温储热的多元醇相变材料热物性的分子动力学模拟与实验研究[D]. 杭州: 浙江大学, 2021. |
Feng B. Molecular dynamics and experimental study of the thermophysical properties of polyol phase change materials for medium-temperature latent heat storage[D]. Hangzhou: Zhejiang University, 2021. | |
23 | Leimkuhler B, Reich S. Simulating Hamiltonian Dynamics[M]. Cambridge: Cambridge University Press, 2004. |
24 | Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations[M]. 2nd ed. Berlin: Springer, 2006. |
25 | Ladd A J C. Long-range dipolar interactions in computer simulations of polar liquids[J]. Molecular Physics, 1978, 36(2): 463-474. |
26 | Chipot C. Numerical methods for molecular dynamics simulations of biological systems[DB/OL]. . |
27 | Dranchuk P M, Abou-Kassem J H. Calculation of Z factors for natural gases using equations of state[J]. Journal of Canadian Petroleum Technology, 1975, 14(3): 34-36. |
28 | Dranchuk P M, Purvis R A, Robinson D B. Computer calculation of natural gas compressibility factors using the standing and katz correlation[C]// Annual Technical Meeting. Edmonton. Petroleum Society of Canada, 1973: 73-112. |
29 | 邓凡锋, 周鑫, 董了瑜, 等. 烃露点分析在天然气标准气体制备中的应用[J]. 计量学报, 2018, 39(1): 115-118. |
Deng F F, Zhou X, Dong L Y, et al. Application of hydrocarbon dew point analysis in preparation for calibration natural gas[J]. Acta Metrologica Sinica, 2018, 39(1): 115-118. | |
30 | Beggs D H, Brill J P. A study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607-617. |
31 | Mahmoud M. Development of a new correlation of gas compressibility factor (Z-factor) for high pressure gas reservoirs[J]. Journal of Energy Resources Technology, 2014, 136(1): 012903. |
32 | 彭得兵, 阳建平, 刘志斌,等. 超高压天然气黏度计算方法及改进[C]// 2017油气田勘探与开发国际会议(IFEDC 2017)论文集. 成都, 2017: 582-590. |
Peng D B, Yang J P, Liu Z B, et al. The calculation method and improvement for viscosity of ultra-high-pressure natural gas[C]//IFEDC 2017. Chengdu, 2017: 582-590. | |
33 | Dean D E, Stiel L I. The viscosity of nonpolar gas mixtures at moderate and high pressures[J]. AIChE Journal, 1965, 11(3): 526-532. |
34 | Lee A L, Gonzalez M H, Eakin B E. The viscosity of natural gases[J]. Journal of Petroleum Technology, 1966, 18(8): 997-1000. |
35 | Londono F E, Archer R A, Blasingame T A. Correlations for hydrocarbon-gas viscosity and gas density-validation and correlation of behavior using a large-scale database[J]. SPE Reservoir Evaluation &Engineering, 2005, 8(6): 561-572. |
36 | 章聪, 江锦波, 彭旭东, 等. 近临界区CO2物性预测模型对比与修正[J]. 化工学报, 2019, 70(8): 3058-3070. |
Zhang C, Jiang J B, Peng X D, et al. Comparison and correction of CO2 properties model in critical region[J]. CIESC Journal, 2019, 70(8): 3058-3070. | |
37 | 祁影霞, 张华, 陈曦, 等. 二氧化碳制冷工质热物性的分子动力学计算[C]//中国制冷学会, 走中国创造之路—中国制冷学会学术年会. 南京, 2011: 1228-1232. |
Qi Y X, Zhang H, Chen X, et al. Molecular dynamics calculation of thermophysical properties of carbon dioxide refrigerant[C]// Chinese Association of Refrigeration, Take the Road of China's Creation—Chinese Association of Refrigeration Annual Meeting Papers. Nanjing, 2011: 1228-1232. | |
38 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 天然气 热力学性质计算 第1部分:输配气中的气相性质: [S]. 北京: 中国标准出版社, 2014. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Natural gas—Calculation of thermodynamic properties—Part 1: Gas phase properties for transmission and distribution applications: [S]. Beijing: Standards Press of China, 2014. | |
39 | Elsharkawy A. M. Efficient methods for calculations of compressibility, density, and viscosity of natural gases[J]. Bulletin of Canadian Petroleum Geology, 2006, 45(6): 4. |
40 | Jarrahian A, Aghel B, Heidaryan E. On the viscosity of natural gas[J]. Fuel, 2015, 150: 609-618. |
[1] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[2] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[3] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[4] | 张欣, 薛宇, 马懿星, 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞. 电晕放电与介质阻挡放电净化氰化氢的机理[J]. 化工学报, 2024, 75(2): 675-684. |
[5] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[9] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[10] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[15] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||