| 1 |
Dopp E, Hartmann L M, Florea A M, et al. Environmental distribution, analysis, and toxicity of organometal (loid) compounds [J]. Critical Reviews in Toxicology, 2004, 34(3): 301-333.
|
| 2 |
Hylton C A, Tsui M T K. Alteration of acute toxicity of inorganic and methyl mercury to Daphnia magna by dietary addition[J]. Scientific Reports, 2021, 11: 22865.
|
| 3 |
Gao Z Q, Cai L M, Liu M, et al. Total mercury and methylmercury migration and transformation in an A2/O wastewater treatment plant [J]. Science of the Total Environment, 2020, 710: 136384.
|
| 4 |
Liu H, Cui Y, Li H, et al. A case study on the occurrence, transport, and fate of mercury species in a sewage treatment plant in Jiaozuo, China[J]. Environmental Science and Pollution Research, 2018, 25(22): 21616-21622.
|
| 5 |
Liu M D, Du P, Yu C H, et al. Increases of total mercury and methylmercury releases from municipal sewage into environment in China and implications [J]. Environmental Science & Technology, 2018, 52(1): 124-134.
|
| 6 |
Hargreaves A J, Vale P, Whelan J, et al. Mercury and antimony in wastewater: fate and treatment[J]. Water Air & Soil Pollution, 2016, 227(3): 89.
|
| 7 |
Mao Y X, Cheng L, Ma B J, et al. The fate of mercury in municipal wastewater treatment plants in China: significance and implications for environmental cycling[J]. Journal of Hazardous Materials, 2016, 306: 1-7.
|
| 8 |
Li G F, Ma W J, Cheng Y F, et al. A spectra metrology insight into the binding characteristics of Cu2+ onto anammox extracellular polymeric substances[J]. Chemical Engineering Journal, 2020, 393: 124800.
|
| 9 |
Kumari S, Amit, Jamwal R, et al. Recent developments in environmental mercury bioremediation and its toxicity: a review [J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100283.
|
| 10 |
Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894.
|
| 11 |
Yu H Q. Molecular insights into extracellular polymeric substances in activated sludge[J]. Environmental Science & Technology, 2020, 54(13): 7742-7750.
|
| 12 |
Bi Z, Qiao S, Zhou J T, et al. Inhibition and recovery of Anammox biomass subjected to short-term exposure of Cd, Ag, Hg and Pb[J]. Chemical Engineering Journal, 2014, 244: 89-96.
|
| 13 |
Zhu Y L, Liu Y C, Chang H H, et al. Deciphering the microbial community structures and functions of wastewater treatment at high-altitude area[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1107633.
|
| 14 |
郑瑶琪. 铜离子和四环素共存对好氧颗粒污泥除污效能的影响[D]. 哈尔滨: 东北农业大学, 2023.
|
|
Zheng Y Q. Effect of co-existence of copper ions and tetracycline on decontamination efficiency of aerobic granular sludge[D]. Harbin: Northeast Agricultural University, 2023.
|
| 15 |
韩镇蓬, 朱光灿, 陆勇泽, 等. 青藏高原地区城镇污水处理研究现状与发展需求[J]. 净水技术, 2022, 41(11): 76-84, 184.
|
|
Han Z P, Zhu G C, Lu Y Z, et al. Research status and development demands of urban wastewater treatment in the Qinghai-Tibet Plateau region[J]. Water Purification Technology, 2022, 41(11): 76-84, 184.
|
| 16 |
黄德才, 李远威, 郝凯越, 等. 高原温度条件对A2O工艺污水处理效果影响研究[J]. 水处理技术, 2021, 47(11): 106-110.
|
|
Huang D C, Li Y W, Hao K Y, et al. Research on the effect of plateau temperature on sewage treatment effect of anaerobic-anoxic-oxic process [J]. Technology of Water Treatment, 2021, 47(11): 106-110.
|
| 17 |
陈悦. 高海拔地区同步硝化反硝化-反硝化除磷系统工艺优化及氮磷去除特性研究[D]. 南京: 东南大学, 2020.
|
|
Chen Y. Process optimization and nutrient removal characteristics of simultaneous nitrification and denitrification and denitrifying phosphorus removal system at high altitude area[D]. Nanjing: Southeast University, 2020.
|
| 18 |
Feng Y, Zhao Y P, Guo Y Z, et al. Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia[J]. Water Research, 2018, 128: 402-411.
|
| 19 |
张凯. 废水中铁离子浓度对活性污泥产量的影响研究[D]. 兰州: 兰州理工大学, 2020.
|
|
Zhang K. The effect of iron ion concentration in wastewater on activated sludge yield[D]. Lanzhou: Lanzhou University of Technology, 2020.
|
| 20 |
杨张洁. 重金属对SBR反应器性能及微生物菌群的影响研究[D]. 西安: 西安理工大学, 2018.
|
|
Yang Z J. Effect of heavy metals on the performance of SBR reactor and microbial flora[D]. Xi'an: Xi'an University of Technology, 2018.
|
| 21 |
Su C Y, Xian Y C, Qin R H, et al. Fe(Ⅲ) enhances Cr(Ⅵ) bioreduction in a MFC-granular sludge coupling system: experimental evidence and metagenomics analysis[J]. Water Research, 2023, 235: 119863.
|
| 22 |
Ahmed F, Rodrigues D F. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study[J]. Journal of Hazardous Materials, 2013, 256/257: 33-39.
|
| 23 |
Çeçen F, Semerci N, Geyik A G. Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 619-627.
|
| 24 |
Zheng J, Hu M, Zhu L. Removal behaviors of aerobic granular sludge on estrogens: adsorption kinetics and removal mechanism[J]. Journal of Water Process Engineering, 2021, 44: 102410.
|
| 25 |
Ozturk S, Aslim B, Suludere Z. Evaluation of chromium(Ⅵ) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition[J]. Bioresource Technology, 2009, 100(23): 5588-5593.
|
| 26 |
Priyadarshanee M, Das S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104686.
|
| 27 |
Wang Y, Ji M, Zhao Y X, et al. Recovery of nitrification in cadmium-inhibited activated sludge system by bio-accelerators[J]. Bioresource Technology, 2016, 200: 812-819.
|
| 28 |
Xu L Z J, Wu J, Xia W J, et al. Adaption and restoration of anammox biomass to Cd(Ⅱ) stress: performance, extracellular polymeric substance and microbial community[J]. Bioresource Technology, 2019, 290: 121766.
|
| 29 |
彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166.
|
|
Peng Y Z, Wang M Q, Peng Y, et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent: system performance and microbial communities[J]. Journal of Beijing University of Technology, 2021, 47(10): 1158-1166.
|
| 30 |
Miao Y, Liao R H, Zhang X X, et al. Metagenomic insights into Cr(Ⅵ) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52.
|
| 31 |
高静湉, 胡鹏, 蔡怡婷, 等. 纳米ZnO胁迫下SBBR污染物去除性能及微生物群落响应[J]. 中国环境科学, 2022, 42(8): 3658-3665.
|
|
Gao J T, Hu P, Cai Y T, et al. Performance of pollutant removal and responses of microbial community to nano-ZnO stress in SBBR[J]. China Environmental Science, 2022, 42(8): 3658-3665.
|
| 32 |
Cheng Z Y, Zheng Q, Shi J C, et al. Metagenomic and machine learning-aided identification of biomarkers driving distinctive Cd accumulation features in the root-associated microbiome of two rice cultivars[J]. ISME Communications, 2023, 3(1): 14.
|
| 33 |
Du R, Cao S B, Li B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56.
|
| 34 |
Liu B B, Mao Y J, Bergaust L, et al. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes[J]. Environmental Microbiology, 2013, 15(10): 2816-2828.
|