化工学报 ›› 2024, Vol. 75 ›› Issue (5): 2036-2046.DOI: 10.11949/0438-1157.20231393
高磊1(), 戴闻1, 杨忠莲1,2, 李淑萍2,3,4, 闫刚印2,3,4, 孙琪1, 陆勇泽1,4(
), 朱光灿1,2,4(
)
收稿日期:
2023-12-29
修回日期:
2024-02-26
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
陆勇泽,朱光灿
作者简介:
高磊(1996—),男,博士研究生,gao_leiseu@163.com
基金资助:
Lei GAO1(), Wen DAI1, Zhonglian YANG1,2, Shuping LI2,3,4, Gangyin YAN2,3,4, Qi SUN1, Yongze LU1,4(
), Guangcan ZHU1,2,4(
)
Received:
2023-12-29
Revised:
2024-02-26
Online:
2024-05-25
Published:
2024-06-25
Contact:
Yongze LU, Guangcan ZHU
摘要:
汞(Hg)在低气压地区污水处理系统中的存在可能会降低污水处理效率。在实验室规模下以SBR为例,通过研究Hg对低气压条件下污水处理系统的影响发现,Hg显著降低了氨氮(NH4+-N)的去除率,尤其是高浓度Hg的影响更显著,NH4+-N去除率从89.73%下降至38.71%。Hg对SBR周期内的氮转化过程产生了负面影响,当进水Hg浓度为250 µg/L时,活性污泥氨氧化速率(SAOR)和亚硝酸盐还原速率(SNIR)分别下降96.74%和96.91%,与之相关的功能酶活性分别降低100.00%和97.87%。此外,Hg改变了活性污泥的形态和结构,导致污泥整体结构的瓦解和表面特征的变化,同时对EPS的生成产生抑制作用,特别是蛋白质含量受到影响。在微生物群落方面,Hg的加入使活性污泥群落结构发生了显著变化,尤其是和硝化过程相关的功能菌属Nitrosomonas和Nitrospira。因此,低气压条件下需对污水处理系统中Hg存在带来的影响给予关注。
中图分类号:
高磊, 戴闻, 杨忠莲, 李淑萍, 闫刚印, 孙琪, 陆勇泽, 朱光灿. 汞对低气压条件下污水处理系统脱氮性能的影响研究[J]. 化工学报, 2024, 75(5): 2036-2046.
Lei GAO, Wen DAI, Zhonglian YANG, Shuping LI, Gangyin YAN, Qi SUN, Yongze LU, Guangcan ZHU. Effect of Hg on nitrogen removal performance of wastewater treatment system in low-pressure conditions[J]. CIESC Journal, 2024, 75(5): 2036-2046.
组分 | 浓度/(g/L) | 组分 | 浓度/(g/L) |
---|---|---|---|
FeCl3·6H2O | 1.5 | CoCl2·6H2O | 0.15 |
EDTA | 10 | MnCl2·4H2O | 0.12 |
KI | 0.18 | NaMoO4·2H2O | 0.06 |
H3BO4 | 0.15 | CuSO4·5H2O | 0.06 |
表1 微量元素溶液组成
Table 1 Composition of microelement solution
组分 | 浓度/(g/L) | 组分 | 浓度/(g/L) |
---|---|---|---|
FeCl3·6H2O | 1.5 | CoCl2·6H2O | 0.15 |
EDTA | 10 | MnCl2·4H2O | 0.12 |
KI | 0.18 | NaMoO4·2H2O | 0.06 |
H3BO4 | 0.15 | CuSO4·5H2O | 0.06 |
图4 不同SBR系统Hg投加前后氮转化及氮代谢关键功能酶活性变化
Fig.4 Changes in the activities of nitrogen transformation and key functional enzymes of nitrogen metabolism in different SBR systems before and after Hg addition
图6 不同SBR系统Hg投加前后污泥EPS及其中蛋白质、多糖含量变化
Fig.6 Changes of sludge EPS and its protein and polysaccharide contents before and after Hg addition in different SBR systems
样品 | OTU数 | Shannon 指数 | Chao指数 | Simpson 指数 | Coverage/% |
---|---|---|---|---|---|
R2-60d | 814 | 5.379 | 829.80 | 0.811 | 99.9 |
R3-60d | 709 | 5.407 | 709.00 | 0.823 | 99.9 |
R2-90d | 660 | 4.125 | 698.52 | 0.712 | 99.8 |
R3-90d | 844 | 6.117 | 882.29 | 0.931 | 99.8 |
表2 多样性指数
Table 2 Diversity index
样品 | OTU数 | Shannon 指数 | Chao指数 | Simpson 指数 | Coverage/% |
---|---|---|---|---|---|
R2-60d | 814 | 5.379 | 829.80 | 0.811 | 99.9 |
R3-60d | 709 | 5.407 | 709.00 | 0.823 | 99.9 |
R2-90d | 660 | 4.125 | 698.52 | 0.712 | 99.8 |
R3-90d | 844 | 6.117 | 882.29 | 0.931 | 99.8 |
1 | Dopp E, Hartmann L M, Florea A M, et al. Environmental distribution, analysis, and toxicity of organometal (loid) compounds [J]. Critical Reviews in Toxicology, 2004, 34(3): 301-333. |
2 | Hylton C A, Tsui M T K. Alteration of acute toxicity of inorganic and methyl mercury to Daphnia magna by dietary addition[J]. Scientific Reports, 2021, 11: 22865. |
3 | Gao Z Q, Cai L M, Liu M, et al. Total mercury and methylmercury migration and transformation in an A2/O wastewater treatment plant [J]. Science of the Total Environment, 2020, 710: 136384. |
4 | Liu H, Cui Y, Li H, et al. A case study on the occurrence, transport, and fate of mercury species in a sewage treatment plant in Jiaozuo, China[J]. Environmental Science and Pollution Research, 2018, 25(22): 21616-21622. |
5 | Liu M D, Du P, Yu C H, et al. Increases of total mercury and methylmercury releases from municipal sewage into environment in China and implications [J]. Environmental Science & Technology, 2018, 52(1): 124-134. |
6 | Hargreaves A J, Vale P, Whelan J, et al. Mercury and antimony in wastewater: fate and treatment[J]. Water Air & Soil Pollution, 2016, 227(3): 89. |
7 | Mao Y X, Cheng L, Ma B J, et al. The fate of mercury in municipal wastewater treatment plants in China: significance and implications for environmental cycling[J]. Journal of Hazardous Materials, 2016, 306: 1-7. |
8 | Li G F, Ma W J, Cheng Y F, et al. A spectra metrology insight into the binding characteristics of Cu2+ onto anammox extracellular polymeric substances[J]. Chemical Engineering Journal, 2020, 393: 124800. |
9 | Kumari S, Amit, Jamwal R, et al. Recent developments in environmental mercury bioremediation and its toxicity: a review [J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100283. |
10 | Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. |
11 | Yu H Q. Molecular insights into extracellular polymeric substances in activated sludge[J]. Environmental Science & Technology, 2020, 54(13): 7742-7750. |
12 | Bi Z, Qiao S, Zhou J T, et al. Inhibition and recovery of Anammox biomass subjected to short-term exposure of Cd, Ag, Hg and Pb[J]. Chemical Engineering Journal, 2014, 244: 89-96. |
13 | Zhu Y L, Liu Y C, Chang H H, et al. Deciphering the microbial community structures and functions of wastewater treatment at high-altitude area[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1107633. |
14 | 郑瑶琪. 铜离子和四环素共存对好氧颗粒污泥除污效能的影响[D]. 哈尔滨: 东北农业大学, 2023. |
Zheng Y Q. Effect of co-existence of copper ions and tetracycline on decontamination efficiency of aerobic granular sludge[D]. Harbin: Northeast Agricultural University, 2023. | |
15 | 韩镇蓬, 朱光灿, 陆勇泽, 等. 青藏高原地区城镇污水处理研究现状与发展需求[J]. 净水技术, 2022, 41(11): 76-84, 184. |
Han Z P, Zhu G C, Lu Y Z, et al. Research status and development demands of urban wastewater treatment in the Qinghai-Tibet Plateau region[J]. Water Purification Technology, 2022, 41(11): 76-84, 184. | |
16 | 黄德才, 李远威, 郝凯越, 等. 高原温度条件对A2O工艺污水处理效果影响研究[J]. 水处理技术, 2021, 47(11): 106-110. |
Huang D C, Li Y W, Hao K Y, et al. Research on the effect of plateau temperature on sewage treatment effect of anaerobic-anoxic-oxic process [J]. Technology of Water Treatment, 2021, 47(11): 106-110. | |
17 | 陈悦. 高海拔地区同步硝化反硝化-反硝化除磷系统工艺优化及氮磷去除特性研究[D]. 南京: 东南大学, 2020. |
Chen Y. Process optimization and nutrient removal characteristics of simultaneous nitrification and denitrification and denitrifying phosphorus removal system at high altitude area[D]. Nanjing: Southeast University, 2020. | |
18 | Feng Y, Zhao Y P, Guo Y Z, et al. Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia[J]. Water Research, 2018, 128: 402-411. |
19 | 张凯. 废水中铁离子浓度对活性污泥产量的影响研究[D]. 兰州: 兰州理工大学, 2020. |
Zhang K. The effect of iron ion concentration in wastewater on activated sludge yield[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
20 | 杨张洁. 重金属对SBR反应器性能及微生物菌群的影响研究[D]. 西安: 西安理工大学, 2018. |
Yang Z J. Effect of heavy metals on the performance of SBR reactor and microbial flora[D]. Xi'an: Xi'an University of Technology, 2018. | |
21 | Su C Y, Xian Y C, Qin R H, et al. Fe(Ⅲ) enhances Cr(Ⅵ) bioreduction in a MFC-granular sludge coupling system: experimental evidence and metagenomics analysis[J]. Water Research, 2023, 235: 119863. |
22 | Ahmed F, Rodrigues D F. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study[J]. Journal of Hazardous Materials, 2013, 256/257: 33-39. |
23 | Çeçen F, Semerci N, Geyik A G. Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 619-627. |
24 | Zheng J, Hu M, Zhu L. Removal behaviors of aerobic granular sludge on estrogens: adsorption kinetics and removal mechanism[J]. Journal of Water Process Engineering, 2021, 44: 102410. |
25 | Ozturk S, Aslim B, Suludere Z. Evaluation of chromium(Ⅵ) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition[J]. Bioresource Technology, 2009, 100(23): 5588-5593. |
26 | Priyadarshanee M, Das S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104686. |
27 | Wang Y, Ji M, Zhao Y X, et al. Recovery of nitrification in cadmium-inhibited activated sludge system by bio-accelerators[J]. Bioresource Technology, 2016, 200: 812-819. |
28 | Xu L Z J, Wu J, Xia W J, et al. Adaption and restoration of anammox biomass to Cd(Ⅱ) stress: performance, extracellular polymeric substance and microbial community[J]. Bioresource Technology, 2019, 290: 121766. |
29 | 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166. |
Peng Y Z, Wang M Q, Peng Y, et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent: system performance and microbial communities[J]. Journal of Beijing University of Technology, 2021, 47(10): 1158-1166. | |
30 | Miao Y, Liao R H, Zhang X X, et al. Metagenomic insights into Cr(Ⅵ) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. |
31 | 高静湉, 胡鹏, 蔡怡婷, 等. 纳米ZnO胁迫下SBBR污染物去除性能及微生物群落响应[J]. 中国环境科学, 2022, 42(8): 3658-3665. |
Gao J T, Hu P, Cai Y T, et al. Performance of pollutant removal and responses of microbial community to nano-ZnO stress in SBBR[J]. China Environmental Science, 2022, 42(8): 3658-3665. | |
32 | Cheng Z Y, Zheng Q, Shi J C, et al. Metagenomic and machine learning-aided identification of biomarkers driving distinctive Cd accumulation features in the root-associated microbiome of two rice cultivars[J]. ISME Communications, 2023, 3(1): 14. |
33 | Du R, Cao S B, Li B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. |
34 | Liu B B, Mao Y J, Bergaust L, et al. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes[J]. Environmental Microbiology, 2013, 15(10): 2816-2828. |
[1] | 汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938. |
[2] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[3] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[4] | 李琢宇, 金鹏, 陈孝彦, 赵泽玉, 王庆宏, 陈春茂, 詹亚力. 零价铁活化过氧乙酸降解水中双酚A的效果与机制[J]. 化工学报, 2024, 75(3): 987-999. |
[5] | 邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[9] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[10] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[11] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[12] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[13] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[14] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[15] | 武庭宇, 王超, 秦余涛, 庄钰, 都健. 乙酸乙酯/乙醇/水体系预分离萃取精馏工艺研究[J]. 化工学报, 2023, 74(11): 4578-4586. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||