化工学报 ›› 2024, Vol. 75 ›› Issue (5): 2026-2035.DOI: 10.11949/0438-1157.20231282
收稿日期:
2023-12-04
修回日期:
2024-03-12
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
王世学
作者简介:
王金山(1993—),男,博士研究生,wangjinshanwly@tju.edu.cn
基金资助:
Jinshan WANG1(), Shixue WANG1,2(
), Yu ZHU1,2
Received:
2023-12-04
Revised:
2024-03-12
Online:
2024-05-25
Published:
2024-06-25
Contact:
Shixue WANG
摘要:
通过建立高温质子交换膜燃料电池数学模型,模拟了冷却表面存在不同温差时燃料电池内热-电-质的传输特性,分析了温差对电池内温度分布、氧浓度分布、极化曲线、膜质子电导率和电流密度的影响。结果表明:膜内温度和质子电导率随着冷却表面温度的降低而降低;催化层内的局部氧浓度随着冷却表面温差(即温度梯度)的增大而增大,但电流密度受温度及反应物浓度双重因素影响,电流密度及功率密度随着温度梯度的增大而下降。当冷却表面温度梯度从0增加至0.82 K/cm时,峰值功率密度从0.578 W/cm2下降到0.523 W/cm2,下降了9.52%。控制工作电压大于0.5 V、温度梯度小于0.20 K/cm时可获得较好的电流密度均匀性。当工作电压为0.5 V,冷却表面温度梯度为0.20 K/cm时,电流密度均匀性为92.71%。
中图分类号:
王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035.
Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance[J]. CIESC Journal, 2024, 75(5): 2026-2035.
守恒方程 | 表达式 | 源项 |
---|---|---|
质量 | ||
物质 | ||
动量 | ||
电荷 | ||
能量 |
表1 HT-PEMFC数学模型及源项表达式[28-29]
Table 1 HT-PEMFC mathematical model and source terms[28-29]
守恒方程 | 表达式 | 源项 |
---|---|---|
质量 | ||
物质 | ||
动量 | ||
电荷 | ||
能量 |
参数 | 数值 | 文献 |
---|---|---|
流道宽度、高度、脊宽度/m | 1×10-3、1×10-3、1×10-3 | [ |
膜、催化层、扩散层厚度/m | 5×10-5、1×10-5、2.25×10-4 | [ |
催化层中电解液分数 | 0.21 | [ |
催化层和扩散层孔隙率 | 0.4、0.6 | [ |
PEM、CL、GDL和BP密度/(kg/m3) | 1300、2145、1800、2266 | [ |
PEM、CL、GDL和BP比热容/(J/(kg·K)) | 1650、3300、568、2930 | [ |
PEM、CL、GDL和BP热导率/(W/(m·K)) | 0.95、1.5、1.2、20 | [ |
CL、GDL和BP材料的电导率/(S/m) | 500、1000、20000 | [ |
氢气热导率/(W/(m·K)) | [ | |
氧气热导率/(W/(m·K)) | [ | |
水蒸气热导率/(W/(m·K)) | [ | |
氮气热导率/(W/(m·K)) | [ | |
氢气动力黏度/(Pa·s) | [ | |
氧气动力黏度/(Pa·s) | [ | |
水蒸气动力黏度/(Pa·s) | [ | |
氢气扩散系数/(m2/s) | [ | |
氧气扩散系数/(m2/s) | [ | |
水蒸气扩散系数/(m2/s) | [ | |
磷酸掺杂水平 | 10 | [ |
阳极、阴极传递系数 | 0.5、0.45 | [ |
氢气、氧气参考浓度/(mol/m3) | 40.88、40.88 | [ |
表2 HT-PEMFC数学模型及几何结构参数
Table 2 Parameters in the mathematical model and structure of HT-PEMFC
参数 | 数值 | 文献 |
---|---|---|
流道宽度、高度、脊宽度/m | 1×10-3、1×10-3、1×10-3 | [ |
膜、催化层、扩散层厚度/m | 5×10-5、1×10-5、2.25×10-4 | [ |
催化层中电解液分数 | 0.21 | [ |
催化层和扩散层孔隙率 | 0.4、0.6 | [ |
PEM、CL、GDL和BP密度/(kg/m3) | 1300、2145、1800、2266 | [ |
PEM、CL、GDL和BP比热容/(J/(kg·K)) | 1650、3300、568、2930 | [ |
PEM、CL、GDL和BP热导率/(W/(m·K)) | 0.95、1.5、1.2、20 | [ |
CL、GDL和BP材料的电导率/(S/m) | 500、1000、20000 | [ |
氢气热导率/(W/(m·K)) | [ | |
氧气热导率/(W/(m·K)) | [ | |
水蒸气热导率/(W/(m·K)) | [ | |
氮气热导率/(W/(m·K)) | [ | |
氢气动力黏度/(Pa·s) | [ | |
氧气动力黏度/(Pa·s) | [ | |
水蒸气动力黏度/(Pa·s) | [ | |
氢气扩散系数/(m2/s) | [ | |
氧气扩散系数/(m2/s) | [ | |
水蒸气扩散系数/(m2/s) | [ | |
磷酸掺杂水平 | 10 | [ |
阳极、阴极传递系数 | 0.5、0.45 | [ |
氢气、氧气参考浓度/(mol/m3) | 40.88、40.88 | [ |
温差/K | 温度梯度/(K/cm) | a | b |
---|---|---|---|
0 | 0 | 0 | 433.15 |
5 | 0.10 | 102.04 | 428.10 |
10 | 0.20 | 204.08 | 423.05 |
20 | 0.41 | 408.16 | 412.95 |
30 | 0.61 | 612.24 | 402.84 |
40 | 0.82 | 816.33 | 392.74 |
表3 冷却表面温度分布函数参数
Table 3 Temperature distribution function parameters in cooling surface
温差/K | 温度梯度/(K/cm) | a | b |
---|---|---|---|
0 | 0 | 0 | 433.15 |
5 | 0.10 | 102.04 | 428.10 |
10 | 0.20 | 204.08 | 423.05 |
20 | 0.41 | 408.16 | 412.95 |
30 | 0.61 | 612.24 | 402.84 |
40 | 0.82 | 816.33 | 392.74 |
图3 膜中心面温度和质子电导率分布、催化层中心面氧浓度及电流密度分布
Fig.3 Temperature and proton conductivity distribution at the membrane center plane, oxygen concentration and current density distribution at the CL center plane
图7 不同冷却表面温差时的极化曲线和功率密度曲线及电流密度变化率
Fig.7 Polarization curves and power density curves and current density change rate under different cooling surface temperature difference
图8 不同温差时膜质子电导率均匀性和电流密度均匀性
Fig.8 Membrane proton conductivity uniformity and current density uniformity under different cooling surface temperature difference
1 | Han C L, Jiang T, Shang K, et al. Heat and mass transfer performance of proton exchange membrane fuel cells with electrode of anisotropic thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121957. |
2 | Ferng Y M, Su A, Hou J. Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC[J]. Energy Conversion and Management, 2014, 78: 431-437. |
3 | Jha V, Hariharan R, Krishnamurthy B. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311. |
4 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
Zhang J, Guo Z B, Zhang J J, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
5 | 李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142. |
Li H, Yang Z J, Xu T W. Research progress of high temperature proton exchange membranes[J]. CIESC Journal, 2021, 72(1): 132-142. | |
6 | Vengatesan S, Kim H, Lee S, et al. High temperature operation of PEMFC: a novel approach using MEA with silica in catalyst layer[J]. International Journal of Hydrogen Energy, 2008, 33(1): 171-178. |
7 | 罗来明, 张劲, 郭志斌, 等. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
Luo L M, Zhang J, Guo Z B, et al. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range[J]. CIESC Journal, 2023, 74(4): 1724-1734. | |
8 | Zhao J J, Cai S S, Luo X B, et al. Dynamic characteristics and economic analysis of PEMFC-based CCHP systems with different dehumidification solutions[J]. International Journal of Hydrogen Energy, 2022, 47(22): 11644-11657. |
9 | Kannan A, Aili D, Cleemann L N, et al. Three-layered electrolyte membranes with acid reservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(1): 1008-1017. |
10 | Skorikova G, Rauber D, Aili D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200℃[J]. Journal of Membrane Science, 2020, 608: 118188. |
11 | Quartarone E, Mustarelli P. Polymer fuel cells based on polybenzimidazole/H3PO4 [J]. Energy & Environmental Science, 2012, 5(4): 6436-6444. |
12 | Aili D, Henkensmeier D, Martin S, et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. |
13 | Ghosh P, Ganguly S, Kargupta K. Phosphosilicate nano-network (PPSN)-polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC[J]. International Journal of Hydrogen Energy, 2022, 47(75): 32287-32302. |
14 | Li X B, Ma H W, Shen Y C, et al. Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 336: 391-400. |
15 | Atak N N, Dogan B, Yesilyurt M K. Investigation of the performance parameters for a PEMFC by thermodynamic analyses: effects of operating temperature and pressure[J]. Energy, 2023, 282: 128907. |
16 | Chen Z J, Zuo W, Zhou K, et al. Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell[J]. Energy, 2023, 278: 127982. |
17 | Das S K, Gibson H A. Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2021, 499: 229844. |
18 | Ryu S K, Vinothkannan M, Kim A R, et al. Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120—160℃[J]. Energy, 2022, 238(B): 121791. |
19 | Caglayan D G, Sezgin B, Devrim Y, et al. Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10060-10070. |
20 | Scholta J, Messerschmidt M, Jörissen L, et al. Externally cooled high temperature polymer electrolyte membrane fuel cell stack[J]. Journal of Power Sources, 2009, 190(1): 83-85. |
21 | Xia L C, Zhang C Z, Hu M H, et al. Investigation of parameter effects on the performance of high-temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23441-23449. |
22 | Suzuki A, Oono Y, Williams M C, et al. Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18272-18289. |
23 | Wu H C, Wang W W, Ji J Q, et al. Thermal cure-induced crosslinked polybenzimidazole containing 4,5-diazafluorene and pyridine for high-temperature proton exchange membrane[J]. Journal of Power Sources, 2023, 567: 232972. |
24 | Renau J, Barroso J, Lozano A, et al. Design and manufacture of a high-temperature PEMFC and its cooling system to power a lightweight UAV for a high altitude mission[J]. International Journal of Hydrogen Energy, 2016, 41(43): 19702-19712. |
25 | Chippar P, Ju H. Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell[J]. Solid State Ionics, 2012, 225: 30-39. |
26 | Supra J, Janßen H, Lehnert W, et al. Temperature distribution in a liquid-cooled HT-PEFC stack[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1943-1951. |
27 | Reddy E H, Jayanti S, Monder D S. Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1—10 kWe[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20127-20138. |
28 | Yin Y, Wang J B, Yang X L, et al. Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13671-13680. |
29 | Zhang J, Zhang C Z, Hao D, et al. 3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2577-2593. |
30 | Jiao K, Alaefour I E, Li X G. Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes[J]. Fuel, 2011, 90(2): 568-582. |
31 | Xia L C, Xu Q D, He Q J, et al. Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21098-21111. |
32 | Mohanty S, Desai A N, Singh S, et al. Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20650-20663. |
33 | Reddy E H, Monder D S, Jayanti S. Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell[J]. Applied Thermal Engineering, 2013, 58(1/2): 155-164. |
34 | Zhao J, Jian Q F, Huang Z P. Experimental study on heat transfer performance of vapor chambers with potential applications in thermal management of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2020, 180: 115847. |
35 | Harikishan Reddy E, Jayanti S. Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell[J]. Applied Thermal Engineering, 2012, 48: 465-475. |
36 | Zuliani N. Design and experimental characterization of a 350 W high temperature PEM fuel cell stack[J]. Frattura ed Integrità Strutturale, 2011, 5(15): 29-34. |
37 | Yin C, Gao Y, Li K, et al. Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization[J]. Energy Conversion and Management, 2021, 245: 114604. |
38 | Zhang T Y, Li J, Li Q, et al. Combination effects of flow field structure and assembly force on performance of high temperature proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2021, 45(5): 7903-7917. |
39 | Ubong E U, Shi Z, Wang X. Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell[J]. Journal of the Electrochemical Society, 2009, 156(10): B1276. |
[1] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[2] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[3] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[4] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[5] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[6] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[7] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[8] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[9] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[10] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[11] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[12] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[13] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[14] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[15] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||