化工学报 ›› 2024, Vol. 75 ›› Issue (5): 2047-2059.DOI: 10.11949/0438-1157.20231153
收稿日期:
2023-11-09
修回日期:
2024-03-20
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
孙灵芳
作者简介:
王迪 (1989—),男,博士,副教授,wd1989125@163.com
基金资助:
Di WANG(), Weiqian CHEN, Lingfang SUN(
), Yunlong ZHOU
Received:
2023-11-09
Revised:
2024-03-20
Online:
2024-05-25
Published:
2024-06-25
Contact:
Lingfang SUN
摘要:
为了改善新能源发电波动对电网的影响,提出了一种光热-跨临界压缩二氧化碳储能(transcritical compressed carbon dioxide energy storage,TC-CCES)循环集成热力系统,采用模块化机理建模方法,基于能质平衡关系分别建立TC-CCES系统与光热系统的动态数学模型,获取TC-CCES系统在储释能阶段关键参数的动态响应曲线。研究结果表明,系统的储能密度达到28.43 kW/m3,储能效率与循环效率分别为58.01%和60.85%,动态数学模型的最大误差均小于5%。此外,太阳直射辐射变化促使系统热源温度变化,而系统负荷对热源温度变化非常敏感,热源温度升高2.29%,换热器负荷升高3.36%,而且在某地区四季典型日冬季比秋季机组负荷低了23.9%。提出的动态数学模型可用于分析太阳能发电的动态特性,可为控制系统的设计提供理论参考。
中图分类号:
王迪, 陈伟倩, 孙灵芳, 周云龙. 光热-跨临界压缩二氧化碳储能循环动态特性研究[J]. 化工学报, 2024, 75(5): 2047-2059.
Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle[J]. CIESC Journal, 2024, 75(5): 2047-2059.
参数 | 数值 |
---|---|
辐射峰值/(kW/m2) | 800 |
平均辐射值/(kW/m2) | 430 |
接收板数/块 | 24 |
每块接收板上的吸热管数/根 | 32 |
吸热管管道直径/cm | 2.1 |
吸热管管壁厚度/mm | 1.2 |
接收器高度/m | 6.2 |
接收器直径/m | 5.1 |
接收器离地面高度/m | 76.2 |
表1 接收器系统参数
Table 1 Receiver system parameter
参数 | 数值 |
---|---|
辐射峰值/(kW/m2) | 800 |
平均辐射值/(kW/m2) | 430 |
接收板数/块 | 24 |
每块接收板上的吸热管数/根 | 32 |
吸热管管道直径/cm | 2.1 |
吸热管管壁厚度/mm | 1.2 |
接收器高度/m | 6.2 |
接收器直径/m | 5.1 |
接收器离地面高度/m | 76.2 |
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
压缩机出口温度/℃ | 327.10 | 324 | 0.96% |
压缩机出口压力/kPa | 13827.90 | 13840 | 0.09% |
透平出口温度/℃ | 740.20 | 750 | 1.31% |
透平出口压力/kPa | 7890.20 | 7890 | 0.003% |
换热器冷端出口温度/℃ | 808.80 | 810 | 0.15% |
换热器冷端出口压力/kPa | 13498.40 | 13500 | 0.01% |
预冷器热端出口温度/℃ | 305.10 | 305 | 0.03% |
预冷器热端出口压力/kPa | 7684 | 7690 | 0.08% |
表2 TC-CCES模型静态验证
Table 2 Steady-state verification of TC-CCES model
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
压缩机出口温度/℃ | 327.10 | 324 | 0.96% |
压缩机出口压力/kPa | 13827.90 | 13840 | 0.09% |
透平出口温度/℃ | 740.20 | 750 | 1.31% |
透平出口压力/kPa | 7890.20 | 7890 | 0.003% |
换热器冷端出口温度/℃ | 808.80 | 810 | 0.15% |
换热器冷端出口压力/kPa | 13498.40 | 13500 | 0.01% |
预冷器热端出口温度/℃ | 305.10 | 305 | 0.03% |
预冷器热端出口压力/kPa | 7684 | 7690 | 0.08% |
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
熔盐入口温度/℃ | 302 | 302 | — |
熔盐流量/(kg/s) | 70.90 | 70.90 | — |
DNI/(W/m2) | 897.50 | 897.50 | — |
风速/(m/s) | 1.2 | 1.2 | — |
定日镜场镜面总面积/m2 | 82980 | 82980 | — |
熔盐出口温度/℃ | 561.42 | 561.90 | 0.09% |
表3 光热模型静态验证
Table 3 Steady-state verification of photothermal model
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
熔盐入口温度/℃ | 302 | 302 | — |
熔盐流量/(kg/s) | 70.90 | 70.90 | — |
DNI/(W/m2) | 897.50 | 897.50 | — |
风速/(m/s) | 1.2 | 1.2 | — |
定日镜场镜面总面积/m2 | 82980 | 82980 | — |
熔盐出口温度/℃ | 561.42 | 561.90 | 0.09% |
参数 | 数值 |
---|---|
环境温度Ta/K | 298.15 |
压缩机入口温度/K | 304.1 |
透平入口温度/K | 469.0 |
压缩机入口压力/MPa | 7.39 |
压缩机出口压力/MPa | 38.43 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 88 |
压缩机转子直径/mm | 99 |
透平转子直径/mm | 80 |
压缩机、透平转速/(r/min) | 60000 |
压缩机耗功/MW | 4.37 |
透平做功/MW | 2.85 |
预冷器换热面积/m2 | 1833 |
加热器换热面积/m2 | 131.8 |
储能压力/MPa | 38.43 |
表4 系统设计参数
Table 4 System design parameter
参数 | 数值 |
---|---|
环境温度Ta/K | 298.15 |
压缩机入口温度/K | 304.1 |
透平入口温度/K | 469.0 |
压缩机入口压力/MPa | 7.39 |
压缩机出口压力/MPa | 38.43 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 88 |
压缩机转子直径/mm | 99 |
透平转子直径/mm | 80 |
压缩机、透平转速/(r/min) | 60000 |
压缩机耗功/MW | 4.37 |
透平做功/MW | 2.85 |
预冷器换热面积/m2 | 1833 |
加热器换热面积/m2 | 131.8 |
储能压力/MPa | 38.43 |
参数 | 数值 |
---|---|
储能效率/% | 58.01 |
循环效率/% | 60.85 |
储能密度/(kW/m3) | 28.43 |
表5 系统性能指标计算结果
Table 5 Calculation result of system performance indicators
参数 | 数值 |
---|---|
储能效率/% | 58.01 |
循环效率/% | 60.85 |
储能密度/(kW/m3) | 28.43 |
季节 | 储能效率/% | 储能密度/(kW/m3) |
---|---|---|
春季 | 39.51 | 19.06 |
夏季 | 39.83 | 19.19 |
秋季 | 41.56 | 20.02 |
冬季 | 34.75 | 16.93 |
表6 不同工况下(四季)系统性能指标
Table 6 System performance index under different working conditions (four seasons)
季节 | 储能效率/% | 储能密度/(kW/m3) |
---|---|---|
春季 | 39.51 | 19.06 |
夏季 | 39.83 | 19.19 |
秋季 | 41.56 | 20.02 |
冬季 | 34.75 | 16.93 |
1 | 刘佳, 夏红德, 陈海生, 等. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12): 1993-1996. |
Liu J, Xia H D, Chen H S, et al. A novel energy storage technology based on liquid air and its application in wind power[J]. Journal of Engineering Thermophysics, 2010, 31(12): 1993-1996. | |
2 | 国家能源局. 国家能源局2021年二季度网上新闻发布会文字实录[EB/OL]. [2021-04-29]. . |
National Energy Administration. Transcript of the National Energy Administration’s online press conference in the second quarter of 2021[EB/OL]. [2021-04-29]. . | |
3 | 王世杰, 胡威, 高鑫, 等. 新能源并网发电对配电网电能质量的影响研究[J]. 计算技术与自动化, 2021, 40(2): 47-52. |
Wang S J, Hu W, Gao X, et al. Influence of new energy generation connected on power quality of distribution network[J]. Computing Technology and Automation, 2021, 40(2): 47-52. | |
4 | Wang H R, Wang L Q, Wang X B, et al. A novel pumped hydro combined with compressed air energy storage system[J]. Energies, 2013, 6(3): 1554-1567. |
5 | Nayak D S, Shivarudraswamy R, Drossard F. The new control scheme for the PV and wind hybrid system connected to the single phase grid[J]. Journal of Electrical Engineering & Technology, 2020, 15(5): 1929-1936. |
6 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
7 | Ahmadi M H, Mehrpooya M, Pourfayaz F. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink[J]. Applied Thermal Engineering, 2016, 109: 640-652. |
8 | Kim Y M, Shin D G, Lee S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. |
9 | Hao Y P, He Q, Liu W Y, et al. Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump[J]. International Journal of Energy Research, 2020, 44(10): 7924-7937. |
10 | Zhang X R, Wang G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41: 1487-1503. |
11 | Liu H, He Q, Borgia A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. |
12 | Zhang Y, Yang K, Hong H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697. |
13 | 吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100. |
Wu Y, Hu D S, Wang M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 45-49, 100. | |
14 | Liu X, Yan X W, Liu X L, et al. Comprehensive evaluation of a novel liquid carbon dioxide energy storage system with cold recuperator: energy, conventional exergy and advanced exergy analysis[J]. Energy Conversion and Management, 2021, 250: 114909. |
15 | Manikumar R, Arasu A V. A feasibility study of carbon-dioxide based Rankine cycle powered by the linear Fresnel reflector solar concentrator system[J]. Distributed Generation & Alternative Energy Journal, 2018, 33(2): 58-80. |
16 | Yamaguchi H, Yamasaki H, Kizilkan O. Experimental investigation of solar-assisted transcritical CO2 Rankine cycle for summer and winter conditions from exergetic point of view[J]. International Journal of Energy Research, 2020, 44(2): 1089-1102. |
17 | Alzahrani A A, Dincer I. Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems[J]. Solar Energy, 2018, 170: 557-567. |
18 | Zhang Q, Jiang K J, Ge Z H, et al. Control strategy of molten salt solar power tower plant function as peak load regulation in grid[J]. Applied Energy, 2021, 294: 116967. |
19 | Singh R, Miller S A, Rowlands A S, et al. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant[J]. Energy, 2013, 50: 194-204. |
20 | Dyreby J J, Klein S A, Nellis G F, et al. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles[C]//Proceedings of ASME Turbo Expo 2013. Turbine Technical Conference and Exposition. Texas, USA: San Antonio, 2013, 8: 95824. |
21 | Olumayegun O, Wang M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249: 89-102. |
22 | Hu H M, Guo C H, Cai H F, et al. Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J]. Energy, 2021, 214: 119017. |
23 | Chu W, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. |
24 | Ibarra M, Rovira A, Alarcón-Padilla D C, et al. Performance of a 5kWe Organic Rankine Cycle at part-load operation[J]. Applied Energy, 2014, 120: 147-158. |
25 | 刘春尧. 槽式太阳能低温热发电过程建模与控制[D]. 北京: 华北电力大学, 2019. |
Liu C Y. Modeling and control of low temperature parabolic trough solar thermal power generation processes[D]. Beijing: North China Electric Power University, 2019. | |
26 | Guo H, Xu Y J, Zhang X H, et al. Dynamic characteristics and control of supercritical compressed air energy storage systems[J]. Applied Energy, 2021, 283: 116294. |
27 | Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836. |
28 | Yang J Z, Yang Z, Duan Y Y. Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system[J]. Energy, 2020, 201: 117676. |
29 | 任涛.基于联立方程的塔式太阳能热电系统模拟与运行优化[D]. 杭州: 浙江大学, 2015. |
Ren T. Simulation and operation optimization of solar tower power system based on simultaneous equations[D]. Hangzhou: Zhejiang University, 2015. | |
30 | 孙嘉. 超临界二氧化碳循环发电系统动态特性及控制应用分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Sun J. Characteristic simulation and control of supercritical carbon dioxide cycle power generation system[D]. Harbin: Harbin Institute of Technology, 2018. | |
31 | 何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报 (自然科学版), 2020, 47(5): 93-101. |
He Q, Hao Y P, Liu W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(5): 93-101. | |
32 | Liu Z, Liu B, Guo J Z, et al. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2019, 198: 111807. |
33 | Deng T R, Li X H, Wang Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180: 292-302. |
34 | Bradshaw R W, Dawson D B, De La Rosa W, et al. Final test and evaluation results from the solar two project[R]. Livermore, CA (United States): Sandia National Lab, 2002. |
35 | 李佳燕.太阳能热发电系统接收器的建模仿真及控制算法研究[D]. 杭州: 浙江大学, 2015. |
Li J Y. Research on modeling, simulation and control algorithm of the receiver in a solar power station[D]. Hangzhou: Zhejiang University, 2015. |
[1] | 许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911. |
[2] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[3] | 刘梦绮, 王凯, 骆广生. 基于人工智能的微分散基础研究[J]. 化工学报, 2024, 75(4): 1096-1104. |
[4] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[5] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[6] | 王娟, 李秀明, 邵炜涛, 丁续, 霍莹, 付连超, 白云宇, 李迪. 多孔板鼓泡塔流动与传质特性数值模拟[J]. 化工学报, 2024, 75(3): 801-814. |
[7] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[8] | 董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935. |
[9] | 张昕锐, 陈雪梅. CNT/PVA@碳布膜的光电联合驱动界面蒸发性能研究[J]. 化工学报, 2024, 75(3): 1028-1039. |
[10] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[11] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[12] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[13] | 钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196. |
[14] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[15] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||