化工学报 ›› 2024, Vol. 75 ›› Issue (3): 1000-1008.DOI: 10.11949/0438-1157.20231152
邓志诚1(), 许世峰2, 王淇冬2, 王家瑞1, 王斯民1(
)
收稿日期:
2023-11-09
修回日期:
2024-01-03
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
王斯民
作者简介:
邓志诚(2001—),男,硕士研究生,deng2194410841@stu.xjtu.edu.cn
基金资助:
Zhicheng DENG1(), Shifeng XU2, Qidong WANG2, Jiarui WANG1, Simin WANG1(
)
Received:
2023-11-09
Revised:
2024-01-03
Online:
2024-03-25
Published:
2024-05-11
Contact:
Simin WANG
摘要:
浸没燃烧技术在处理高盐高化学需氧量(COD)废水方面具有传热效率高、不易结晶结垢、处理范围广等优势。针对此技术,首先自主设计搭建了实验平台,研究了常规浸没燃烧过程中的气液两相流动换热特性,分析了浸没燃烧关键操作参数对不同浓度高盐高COD废水的处理能力。在此基础上,为了进一步提高能效,对比了不同浸没管结构下的蒸发性能。实验结果表明:增大燃气流量与浸没深度有利于提高温升速率,缩短蒸发时间;随着有机溶液流量和有机溶液初始COD值的增大,COD去除率有所降低,其中有机溶液流量对COD的去除效率作用更加明显;采用平板多孔板与锥形多孔板浸没管结构能改善高温烟气分布情况,提高蒸发效率与热效率,但不利于浸没管背压稳定,导致液面波动程度增大;与传统单效蒸发结晶能耗对比,浸没燃烧装置运行能耗下降,总运行费用降低28.3%,经济性能得到提升。
中图分类号:
邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008.
Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion[J]. CIESC Journal, 2024, 75(3): 1000-1008.
项目 | 浸没式燃烧 | 单效蒸发 结晶 | 多(三)效 蒸发结晶 |
---|---|---|---|
蒸发量/(t/h) | 0.66 | ||
有效热量/(kcal) | 418686.40 | ||
能源消耗 | |||
天然气/(m³/h) | 51.81 | — | — |
蒸汽/(t/h) | — | 0.86 | 0.26 |
循环水/(t/h) | — | 60.00 | 60.00 |
电/(kW/h) | 4.00 | 12.00 | 15.00 |
运行费用 | |||
天然气费用/(CNY/h) | 157.50 | — | — |
蒸汽费用/(CNY/h) | — | 206.4 | 61.92 |
循环水费用/(CNY/h) | — | 9.00 | 9.00 |
电费/(CNY/h) | 2.68 | 8.04 | 10.05 |
总运行费用/(CNY/h) | 160.18 | 223.44 | 80.97 |
表1 不同蒸发结晶方式运行费用对比
Table 1 Operational cost comparison of different evaporation crystallization methods
项目 | 浸没式燃烧 | 单效蒸发 结晶 | 多(三)效 蒸发结晶 |
---|---|---|---|
蒸发量/(t/h) | 0.66 | ||
有效热量/(kcal) | 418686.40 | ||
能源消耗 | |||
天然气/(m³/h) | 51.81 | — | — |
蒸汽/(t/h) | — | 0.86 | 0.26 |
循环水/(t/h) | — | 60.00 | 60.00 |
电/(kW/h) | 4.00 | 12.00 | 15.00 |
运行费用 | |||
天然气费用/(CNY/h) | 157.50 | — | — |
蒸汽费用/(CNY/h) | — | 206.4 | 61.92 |
循环水费用/(CNY/h) | — | 9.00 | 9.00 |
电费/(CNY/h) | 2.68 | 8.04 | 10.05 |
总运行费用/(CNY/h) | 160.18 | 223.44 | 80.97 |
1 | 刘晓来, 许梦婷, 邵珍霞. 城市生活废水处理及环境保护的影响[J]. 环境与发展, 2020, 32(11): 44-45. |
Liu X L, Xu M T, Shao Z X. Urban domestic wastewater treatment and environmental impact[J]. Environment and Development, 2020, 32(11): 44-45. | |
2 | 王存存. 零排放理念下的工业废水处理技术分析[J]. 清洗世界, 2022, 38(2): 109-111. |
Wang C C. Analysis of industrial wastewater treatment technology under the concept of zero discharge[J]. Cleaning World, 2022, 38(2): 109-111. | |
3 | 黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, 36(1): 10-23. |
Huang X, Chen Y G, Su N N, et al. Research on fractional crysallization technologies for recovering salts from high salinity wastewater[J]. Chemical Industry and Engineering, 2019, 36(1): 10-23. | |
4 | Saiyood S, Vangnai A S, Inthorn D, et al. Treatment of total dissolved solids from plastic industrial effluent by halophytic plants[J]. Water, Air, & Soil Pollution, 2012, 223(8): 4865-4873. |
5 | 刘荣新. 高盐高COD废水处理技术研究进展[J]. 化工管理, 2020(10): 34-35. |
Liu R X. Research progress on treatment technology of wastewater with high salinity and COD[J]. Chemical Enterprise Management, 2020(10): 34-35. | |
6 | 孙群宁, 李会. 高浓度COD化工废水处理技术浅述[J]. 广东化工, 2020, 47(3): 156-157, 166. |
Sun Q N, Li H. Treatment technology of chemical wastewater with high COD[J]. Guangdong Chemical Industry, 2020, 47(3): 156-157, 166. | |
7 | 陈利芳, 周腾腾, 符丽纯, 等. 高盐有机化工废水处理技术分析[J]. 广州化工, 2018, 46(5): 1-2, 40. |
Chen L F, Zhou T T, Fu L C, et al. Analysis of treatment technologies for high-salinity organic chemical wastewater[J]. Guangzhou Chemical Industry, 2018, 46(5): 1-2, 40. | |
8 | 王吉坤, 李阳, 陈贵锋, 等. 臭氧催化氧化降解煤化工生化进水有机物的实验及机理[J]. 化工进展, 2021, 40(10): 5837-5844. |
Wang J K, Li Y, Chen G F, et al. Experimental and mechanism studies on degradation of the organics in biochemical influent of coal chemical industry by ozone catalytic oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5837-5844. | |
9 | Ding P Y, Chu L B, Wang J L. Biological treatment of actual petrochemical wastewater using anaerobic/anoxic/oxic process and the microbial diversity analysis[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10193-10202. |
10 | Rodriguez-Caballero A, Ramond J B, Welz P J, et al. Treatment of high ethanol concentration wastewater by biological sand filters: enhanced COD removal and bacterial community dynamics[J]. Journal of Environmental Management, 2012, 109: 54-60. |
11 | 吕伯宇, 李思凡, 商丽艳. 生物法处理工业废水的研究进展[J]. 当代化工, 2014, 43(3): 432-434. |
Lyu B Y, Li S F, Shang L Y. Research progress in the biological method for treating industrial wastewater[J]. Contemporary Chemical Industry, 2014, 43(3): 432-434. | |
12 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
13 | Wu X Y, Xie W J, Ye J, et al. Progress in heavy metals-containing wastewater treatment via microbial electrolysis cell: a review[J]. Journal of Water Process Engineering, 2023, 55: 104228. |
14 | 陈金思, 金鑫, 胡献国. 有机废液焚烧技术的现状及发展趋势[J]. 安徽化工, 2011, 37(5): 9-11. |
Chen J S, Jin X, Hu X G. Present research and development trends of organic liquid waste incineration technology[J]. Anhui Chemical Industry, 2011, 37(5): 9-11. | |
15 | Castillo Rivera L A, Sillet S, Roussy J, et al. Treatment of high organic-loaded industrial effluents[J]. Water Science and Technology, 2000, 42(5/6): 115-118. |
16 | 李玉,张乔,王群. 蒸发结晶工艺在火电厂脱硫废水零排放中的应用[J]. 水处理技术, 2016, 42(11): 121-122. |
Li Y, Zhang Q, Wang Q. Application of evaporative crystallization process in the zero discharge of desulfurization waste water in thermal power plant[J]. Technology of Water Treatment, 2016, 42(11): 121-122. | |
17 | Yue D B, Xu Y D, Mahar R B, et al. Laboratory-scale experiments applied to the design of a two-stage submerged combustion evaporation system[J]. Waste Management, 2007, 27(5): 704-710. |
18 | Iyer P A, Chieh C. Submerged combustion[J]. Desalination, 1971, 9(1): 19-31. |
19 | 顾其详. 工业废水浸没燃烧法处理[J]. 环境污染与防治, 1983, 5(6): 20-23. |
Gu Q X. Treatment of industrial wastewater by immersion combustion method[J]. Environmental Pollution & Control, 1983, 5(6): 20-23. | |
20 | 岳东北, 聂永丰, 许玉东. 废水浸没燃烧蒸发技术的发展及应用[J]. 中国给水排水, 2005, 21(4): 28-30. |
Yue D B, Nie Y F, Xu Y D. Development and application of submerged combustion evaporation technology for wastewater treatment[J]. China Water & Wastewater, 2005, 21(4): 28-30. | |
21 | 朱德凤. 浸没燃烧蒸发器结构与性能研究[D]. 大连: 大连理工大学, 2013. |
Zhu D F. Research on structures and properties of submerged combustion evaporator[D].Dalian: Dalian University of Technology, 2013. | |
22 | 张锦泰, 黄亚继, 刘秀宁, 等. 浸没燃烧技术处理高浓度有机废水研究[J]. 环境工程, 2017, 35(7): 13-17, 22. |
Zhang J T, Huang Y J, Liu X N, et al. Submerged combustion for treatment of high concentration organic waste water[J]. Environmental Engineering, 2017, 35(7): 13-17, 22. | |
23 | 束小鑫. 浸没燃烧蒸发器浸没管结构优化及特性研究[D]. 景德镇: 景德镇陶瓷大学, 2022. |
Shu X X. Structural optimization and characteristic research of immersion tube of submerged combustion evaporator[D]. Jingdezhen: Jingdezhen Ceramic University, 2022. | |
24 | 夏珺, 蔡一地, 张俊丰, 等. 高温烟气蒸发垃圾渗滤液膜浓缩液的挥发性有机物[J]. 化工进展, 2019, 38(5): 2485-2490. |
Xia J, Cai Y D, Zhang J F, et al. Study of constitutes of volatile organic compounds resulting from high exhaust gas temperature evaporation of landfill leachate membrane concentrate[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2485-2490. | |
25 | Zhang L Y, Wang X Y, Yue D B. Effect of submerged combustion evaporation on Cd complexation potential of organic matter in municipal solid waste landfill leachate[J]. Environmental Pollution, 2020, 267: 115573. |
26 | 艾恒雨, 孟棒棒, 李娜, 等. 我国垃圾渗滤液膜浓缩液处理现状与污染控制建议[J]. 环境工程技术学报, 2016, 6(6): 553-558. |
Ai H Y, Meng B B, Li N, et al. Treatment status and pollution control suggestions for membrane concentrated leachate in China[J]. Journal of Environmental Engineering Technology, 2016, 6(6): 553-558. | |
27 | Han D Y, Xu Q Q, Zhou D, et al. Design of heat transfer in submerged combustion vaporizer[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 76-85. |
28 | Afrianto H, Tanshen M R, Munkhbayar B, et al. A numerical investigation on LNG flow and heat transfer characteristic in heat exchanger[J]. International Journal of Heat and Mass Transfer, 2014, 68: 110-118. |
29 | 江瀚, 刘中良, 宫小龙. 增压浸没燃烧装置热经济分析[J]. 化工学报, 2011, 62(12): 3498-3502. |
Jiang H, Liu Z L, Gong X L. Thermal economics and application of pressurized submerged combustion evaporators[J]. CIESC Journal, 2011, 62(12): 3498-3502. | |
30 | 陈云根. MVR技术在蒸发浓缩中的经济性分析[J]. 中国经贸, 2015(20): 86-87. |
Chen Y G. Economic analysis of MVR technology in evaporation concentration[J]. China Business Update, 2015(20): 86-87. | |
31 | 刘鹏, 王永青. 单效蒸发机械压汽海水淡化系统热力性能分析[J]. 化学工程, 2012, 40(7): 38-42. |
Liu P, Wang Y Q. Thermal performance analysis of single-effect evaporation mechanical vapor compression seawater desalination system[J]. Chemical Engineering (China), 2012, 40(7): 38-42. | |
32 | Shi J X, Huang W P, Han H J, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493: 114640. |
[1] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[2] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[3] | 李琢宇, 金鹏, 陈孝彦, 赵泽玉, 王庆宏, 陈春茂, 詹亚力. 零价铁活化过氧乙酸降解水中双酚A的效果与机制[J]. 化工学报, 2024, 75(3): 987-999. |
[4] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[5] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[6] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[7] | 宋仕容, 刘宏臣, 米晓天, 许超, 杨梅, 尧超群. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
[8] | 刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
[9] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[10] | 周尧, 杨小平, 倪一程, 刘继平, 魏进家, 严俊杰. 应用于新型环路热管的两相引射器数值模拟[J]. 化工学报, 2024, 75(1): 268-278. |
[11] | 李晓阳, 李东, 陶明磊, 周致富, 张灵怡, 苏力争, 张天宁, 李智, 陈斌. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
[12] | 王义江, 孙莉, 刘梦涵, 杨金宏, 王国元. 基于响应面法的矿用翅片管空冷器参数优化[J]. 化工学报, 2024, 75(1): 279-291. |
[13] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[14] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[15] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||