化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3651-3659.DOI: 10.11949/0438-1157.20240370
蒋斯麒1(), 胡玉峰2, 程永强3, 刘清华3, 雷志刚3(
)
收稿日期:
2024-04-02
修回日期:
2024-05-19
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
雷志刚
作者简介:
蒋斯麒(1989—),男,博士,jiangsiqi@sei.com.cn
基金资助:
Siqi JIANG1(), Yufeng HU2, Yongqiang CHENG3, Qinghua LIU3, Zhigang LEI3(
)
Received:
2024-04-02
Revised:
2024-05-19
Online:
2024-10-25
Published:
2024-11-04
Contact:
Zhigang LEI
摘要:
萃取技术可以作为加氢脱硫脱氮工艺的重要补充用于分离油品中芳香性硫氮组分。在分子尺度和实验尺度对离子液体萃取分离苯并噻吩和喹啉进行探讨,利用COSMO-RS模型从37种常见离子液体中确定1-乙基-3-甲基咪唑双氰胺盐([EMIM][DCA])为最佳离子液体萃取剂。通过液液相平衡实验证明了[EMIM][DCA]萃取分离苯并噻吩和喹啉的可行性,再生实验表明所选离子液体在5次循环中萃取性能始终保持稳定。在分子尺度揭示了萃取过程的分离机理,分子动力学模拟和量子化学计算结果表明离子液体与苯并噻吩/喹啉之间形成的π-π相互作用和C—H…N氢键相互作用是离子液体高效分离苯并噻吩和喹啉的主要作用力。研究结果可为新型高效萃取剂设计提供理论指导。
中图分类号:
蒋斯麒, 胡玉峰, 程永强, 刘清华, 雷志刚. 离子液体萃取分离FCC柴油中双环芳香性硫氮组分:实验和分子机理[J]. 化工学报, 2024, 75(10): 3651-3659.
Siqi JIANG, Yufeng HU, Yongqiang CHENG, Qinghua LIU, Zhigang LEI. Extraction of bicyclic S/N-compounds from FCC diesel with ionic liquid: experimental and molecular insight[J]. CIESC Journal, 2024, 75(10): 3651-3659.
Upper phase | Lower phase | ||||
---|---|---|---|---|---|
benzothiophene (1) + dodecane (2) + [EMIM][DCA] at 303.15 K with solvent ratio 1∶1 | |||||
0.0376 | 0.9624 | 0 | 0.0241 | 0.0015 | 0.9744 |
0.0593 | 0.9407 | 0 | 0.0394 | 0.0023 | 0.9583 |
0.0886 | 0.9114 | 0 | 0.0726 | 0.0028 | 0.9246 |
0.1146 | 0.8854 | 0 | 0.0971 | 0.0036 | 0.8993 |
0.1352 | 0.8648 | 0 | 0.1225 | 0.0047 | 0.8728 |
0.1617 | 0.8383 | 0 | 0.1445 | 0.0053 | 0.8502 |
0.1852 | 0.8148 | 0 | 0.1619 | 0.0065 | 0.8316 |
0.2204 | 0.7796 | 0 | 0.1900 | 0.0074 | 0.8026 |
quinoline (1) + dodecane (2) + [EMIM][DCA] at 303.15 K with solvent ratio 1∶1 | |||||
0.0192 | 0.9808 | 0 | 0.0321 | 0.0022 | 0.9657 |
0.0311 | 0.9689 | 0 | 0.0657 | 0.0027 | 0.9316 |
0.0524 | 0.9476 | 0 | 0.0941 | 0.0037 | 0.9022 |
0.0653 | 0.9347 | 0 | 0.1259 | 0.0048 | 0.8693 |
0.0782 | 0.9218 | 0 | 0.1547 | 0.0051 | 0.8402 |
0.0916 | 0.9084 | 0 | 0.1822 | 0.0062 | 0.8116 |
0.1106 | 0.8894 | 0 | 0.2081 | 0.0071 | 0.7848 |
0.1257 | 0.8743 | 0 | 0.2334 | 0.0083 | 0.7583 |
表1 苯并噻吩和喹啉体系的液液相平衡数据
Table 1 LLE data for benzothiophene and quinoline systems
Upper phase | Lower phase | ||||
---|---|---|---|---|---|
benzothiophene (1) + dodecane (2) + [EMIM][DCA] at 303.15 K with solvent ratio 1∶1 | |||||
0.0376 | 0.9624 | 0 | 0.0241 | 0.0015 | 0.9744 |
0.0593 | 0.9407 | 0 | 0.0394 | 0.0023 | 0.9583 |
0.0886 | 0.9114 | 0 | 0.0726 | 0.0028 | 0.9246 |
0.1146 | 0.8854 | 0 | 0.0971 | 0.0036 | 0.8993 |
0.1352 | 0.8648 | 0 | 0.1225 | 0.0047 | 0.8728 |
0.1617 | 0.8383 | 0 | 0.1445 | 0.0053 | 0.8502 |
0.1852 | 0.8148 | 0 | 0.1619 | 0.0065 | 0.8316 |
0.2204 | 0.7796 | 0 | 0.1900 | 0.0074 | 0.8026 |
quinoline (1) + dodecane (2) + [EMIM][DCA] at 303.15 K with solvent ratio 1∶1 | |||||
0.0192 | 0.9808 | 0 | 0.0321 | 0.0022 | 0.9657 |
0.0311 | 0.9689 | 0 | 0.0657 | 0.0027 | 0.9316 |
0.0524 | 0.9476 | 0 | 0.0941 | 0.0037 | 0.9022 |
0.0653 | 0.9347 | 0 | 0.1259 | 0.0048 | 0.8693 |
0.0782 | 0.9218 | 0 | 0.1547 | 0.0051 | 0.8402 |
0.0916 | 0.9084 | 0 | 0.1822 | 0.0062 | 0.8116 |
0.1106 | 0.8894 | 0 | 0.2081 | 0.0071 | 0.7848 |
0.1257 | 0.8743 | 0 | 0.2334 | 0.0083 | 0.7583 |
No. | Binary complex | ΔEtotal/(kJ/mol) | Energy/(kJ/mol) | |||
---|---|---|---|---|---|---|
Eelst | Edisp | Eind | Eexch | |||
1 | EMIM-BT | -56.14 | -47.44 | -61.76 | -18.85 | 71.92 |
2 | EMIM-QL | -67.90 | -61.55 | -54.72 | -22.35 | 70.73 |
3 | DCA-BT | -35.76 | -31.96 | -15.92 | -19.15 | 31.27 |
4 | DCA-QL | -46.56 | -43.46 | -17.47 | -21.16 | 35.53 |
5 | C12-BT | -27.57 | -24.62 | -61.15 | -5.83 | 64.03 |
6 | C12-QL | -28.69 | -25.09 | -63.35 | -5.99 | 65.74 |
表2 分子间相互作用能及能量分解
Table 2 Interaction energy and energy decomposition results of optimized binary complex
No. | Binary complex | ΔEtotal/(kJ/mol) | Energy/(kJ/mol) | |||
---|---|---|---|---|---|---|
Eelst | Edisp | Eind | Eexch | |||
1 | EMIM-BT | -56.14 | -47.44 | -61.76 | -18.85 | 71.92 |
2 | EMIM-QL | -67.90 | -61.55 | -54.72 | -22.35 | 70.73 |
3 | DCA-BT | -35.76 | -31.96 | -15.92 | -19.15 | 31.27 |
4 | DCA-QL | -46.56 | -43.46 | -17.47 | -21.16 | 35.53 |
5 | C12-BT | -27.57 | -24.62 | -61.15 | -5.83 | 64.03 |
6 | C12-QL | -28.69 | -25.09 | -63.35 | -5.99 | 65.74 |
1 | 潘红蕊, 王媛媛. 油品脱氮技术研究进展[J]. 石化技术, 2021, 28(8): 77-78. |
Pan H R, Wang Y Y. Advances in denitrogenation technology of oil[J]. Petrochemical Industry Technology, 2021, 28(8): 77-78. | |
2 | 石亚华. 石油加工过程中的脱硫[M]. 北京: 中国石化出版社, 2009. |
Shi Y H. Desulfurization in Petroleum Processing[M]. Beijing: China Petrochemical Press, 2009. | |
3 | 宋红艳, 何静, 李春喜. 燃料油深度脱硫的技术策略及研究进展[J]. 石油化工, 2015, 44(3): 279-286. |
Song H Y, He J, Li C X. Technical strategies and recent advances for deep desulfurization of fuel oils[J]. Petrochemical Technology, 2015, 44(3): 279-286. | |
4 | Bello S S, Wang C, Zhang M J, et al. A review on the reaction mechanism of hydrodesulfurization and hydrodenitrogenation in heavy oil upgrading[J]. Energy & Fuels, 2021, 35(14): 10998-11016. |
5 | Kulkarni P S, Afonso C A M. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges[J]. Green Chemistry, 2010, 12(7): 1139-1149. |
6 | Li A, Song H Y, Meng H, et al. Steric effects of alkyl dibenzothiophenes: the root cause of frustrating efficacy of heterogeneous desulfurization for real diesel[J]. AIChE Journal, 2022, 68(5): e17614. |
7 | Li G X, Gao Q H, Liu Q H, et al. Extraction of polycyclic aromatic hydrocarbons from fluid catalytic cracking diesel with ionic liquids[J]. AIChE Journal, 2023, 69(2): e17914. |
8 | Shin J, Oh Y, Choi Y, et al. Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons[J]. Applied Catalysis A: General, 2017, 547: 12-21. |
9 | 方静, 张淑婷, 李婷婷, 等. 离子液体用于燃油萃取脱硫的选择与过程优化[J]. 化工学报, 2017, 68(9): 3434-3441. |
Fang J, Zhang S T, Li T T, et al. Selection and process optimization of ionic liquids for desulfurization[J]. CIESC Journal, 2017, 68(9): 3434-3441. | |
10 | Peng D L, Kleiweg A J, Winkelman J G M, et al. A hierarchical hybrid method for screening ionic liquid solvents for extractions exemplified by the extractive desulfurization process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2705-2716. |
11 | Wang D, Zhang T, Yang L, et al. Molecular mechanism and extraction explorations for separation of pyridine from coal pyrolysis model mixture using protic ionic liquid [Hnmp][HSO4][J]. Fuel, 2022, 309: 122130. |
12 | Wang H, Xie C X, Yu S T, et al. Denitrification of simulated oil by extraction with H 2 P O 4 - based ionic liquids[J]. Chemical Engineering Journal, 2014, 237: 286-290. |
13 | Paucar N E, Kiggins P, Blad B, et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1205-1228. |
14 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
15 | Lei Z G, Dai C N, Chen B H. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326. |
16 | Pena-Pereira F, Namieśnik J. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes[J]. ChemSusChem, 2014, 7(7): 1784-1800. |
17 | Bösmann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chemical Communications, 2001(23): 2494-2495. |
18 | Selvan M S, McKinley M D, Dubois R H, et al. Liquid-liquid equilibria for toluene + heptane + 1-ethyl-3-methylimidazolium triiodide and toluene + heptane + 1-butyl-3-methylimidazolium triiodide[J]. Journal of Chemical & Engineering Data, 2000, 45(5): 841-845. |
19 | Song Z, Zhou T, Zhang J N, et al. Screening of ionic liquids for solvent-sensitive extraction—with deep desulfurization as an example[J]. Chemical Engineering Science, 2015, 129: 69-77. |
20 | 惠燕华, 王辉, 刘福胜, 等. 三乙烯二胺类离子液体的合成及其用于脱除非碱性氮[J]. 石油化工, 2021, 50(2): 123-129. |
Hui Y H, Wang H, Liu F S, et al. Synthesis of triethylenediamine ionic liquids and their use in removing non-basic nitrogen[J]. Petrochemical Technology, 2021, 50(2): 123-129. | |
21 | Zhang C L, Wu J, Wang R X, et al. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification[J]. Green Energy & Environment, 2021, 6(3): 339-349. |
22 | Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilibria, 2000, 172(1): 43-72. |
23 | Klamt A, Eckert F, Arlt W. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 101-122. |
24 | Kurczab R, Mitoraj M P, Michalak A, et al. Theoretical analysis of the resonance assisted hydrogen bond based on the combined extended transition state method and natural orbitals for chemical valence scheme[J]. The Journal of Physical Chemistry A, 2010, 114(33): 8581-8590. |
25 | Sprenger K G, Jaeger V W, Pfaendtner J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids[J]. The Journal of Physical Chemistry B, 2015, 119(18): 5882-5895. |
26 | Yoshida Y, Baba O, Saito G. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity[J]. The Journal of Physical Chemistry B, 2007, 111(18): 4742-4749. |
27 | Crosthwaite J M, Muldoon M J, Dixon J K, et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. [J]. J. Chem. Thermodyn., 2005, 37(6): 559-568. |
28 | Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte[J]. J. Fluorine. Chem., 2003, 120(2): 135-141. |
29 | Fan W Y, Huang H W, Li Q, et al. Liquid-liquid equilibria for separation of benzothiophene from model fuel oil: solvent screening and thermodynamic modeling[J]. The Journal of Chemical Thermodynamics, 2022, 167: 106693. |
30 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
31 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. J. Mol. Graph., 1956, 14(1): 33-38. |
[1] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[2] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[3] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[4] | 张广宇, 付然飞, 孙冰, 袁俊聪, 冯翔, 杨朝合, 徐伟. CO2-环氧丙烷合成碳酸丙烯酯:氢键供体效应研究[J]. 化工学报, 2024, 75(6): 2243-2251. |
[5] | 赵志星, 姚智豪, 于雪峰, 杨游胜, 曾英, 于旭东. 锂钠镁共存硫酸盐体系多温相图及其应用[J]. 化工学报, 2024, 75(6): 2123-2133. |
[6] | 武颖韬, 费立涵, 孔祥东, 王帜, 汤成龙, 黄佐华. 咪唑二氰胺离子液体掺混糠醇的自燃及推进性能[J]. 化工学报, 2024, 75(5): 2017-2025. |
[7] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[8] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[9] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[10] | 王瑞瑞, 金颖, 刘玉梅, 李梦悦, 朱胜文, 闫瑞一, 刘瑞霞. 聚合离子液体设计及催化环己烷选择性氧化性能研究[J]. 化工学报, 2024, 75(4): 1552-1564. |
[11] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[12] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
[13] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[14] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[15] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||