化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3660-3668.DOI: 10.11949/0438-1157.20240299
高晨明1(), 张乾1(
), 魏洋2, 张宝霖1, 王奇1, 李向阳1, 李乐1, 薛斌1, 黄伟1
收稿日期:
2024-03-13
修回日期:
2024-04-22
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
张乾
作者简介:
高晨明(1999—),男,硕士研究生,19935373644@163.com
基金资助:
Chenming GAO1(), Qian ZHANG1(
), Yang WEI2, Baolin ZHANG1, Qi WANG1, Xiangyang LI1, Le LI1, Bin XUE1, Wei HUANG1
Received:
2024-03-13
Revised:
2024-04-22
Online:
2024-10-25
Published:
2024-11-04
Contact:
Qian ZHANG
摘要:
针对传统浮选存在药剂消耗量大,分质效率低等问题,采用无须添加药剂,通过叶轮搅拌和上升水流作用分选的新型水流分级装置,考察了直接水流分级、先筛分再逐级分级以及宽粒级水流分级对水煤浆煤气化细渣的提炭分质特性。结果显示,水流分级的浮渣产率随叶轮转速、水流速增加而增加,浮渣烧失量则呈先增加后降低趋势。相较于直接水流分级,对气化渣先筛分再水流分级可避免灰渣细颗粒(<0.074 mm)中炭灰难以有效分离的问题,从而显著提升其提炭效率。采用宽粒级(>0.074 mm)筛分,再对水流分级条件优化,可实现提取浮渣烧失量达84.44%,可燃体回收率达65.85%,综合效率达43.39%。本研究表明通过预筛分再水流分级,可实现煤气化渣的高效提炭分质。
中图分类号:
高晨明, 张乾, 魏洋, 张宝霖, 王奇, 李向阳, 李乐, 薛斌, 黄伟. 水煤浆煤气化细渣水流分级提炭分质[J]. 化工学报, 2024, 75(10): 3660-3668.
Chenming GAO, Qian ZHANG, Yang WEI, Baolin ZHANG, Qi WANG, Xiangyang LI, Le LI, Bin XUE, Wei HUANG. Extraction and separation of carbon from coal water slurry gasification fine slag by waterflow classifier[J]. CIESC Journal, 2024, 75(10): 3660-3668.
样品 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Ad | Vd | FCd | Cd | Hd | Nd | O① | St,d | H/C | |
煤 | 1.15 | 5.72 | 30.24 | 64.04 | 73.83 | 4.01 | 0.76 | 15.43 | 0.25 | 0.65 |
细渣 | 63.22 | 63.03 | 5.59 | 31.38 | 35.09 | 0.65 | 0.20 | 0.13 | 0.90 | 0.22 |
表1 样品的工业和元素分析
Table 1 Proximate and ultimate analyses of the samples
样品 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Ad | Vd | FCd | Cd | Hd | Nd | O① | St,d | H/C | |
煤 | 1.15 | 5.72 | 30.24 | 64.04 | 73.83 | 4.01 | 0.76 | 15.43 | 0.25 | 0.65 |
细渣 | 63.22 | 63.03 | 5.59 | 31.38 | 35.09 | 0.65 | 0.20 | 0.13 | 0.90 | 0.22 |
成分 | 质量分数/% |
---|---|
MgO | 8.06 |
Al2O3 | 16.33 |
SiO2 | 29.51 |
P2O5 | 0.79 |
SO3 | 5.16 |
ClO2 | 0.99 |
K2O | 1.33 |
CaO | 14.1 |
TiO2 | 0.86 |
Fe2O3 | 21.71 |
others | 1.18 |
表2 气化细渣无机矿物质分析
Table 2 Inorganic mineral composition of the coal gasification fine slag by XRF analysis
成分 | 质量分数/% |
---|---|
MgO | 8.06 |
Al2O3 | 16.33 |
SiO2 | 29.51 |
P2O5 | 0.79 |
SO3 | 5.16 |
ClO2 | 0.99 |
K2O | 1.33 |
CaO | 14.1 |
TiO2 | 0.86 |
Fe2O3 | 21.71 |
others | 1.18 |
粒级/mm | 产率/% | 烧失量/% | 灰分 含量/% | 累计 产率/% | 筛上灰分/% |
---|---|---|---|---|---|
>0.50 | 3.64 | 47.81 | 52.19 | 3.64 | 52.19 |
0.50~0.25 | 16.34 | 67.71 | 32.29 | 19.98 | 35.36 |
0.25~0.18 | 19.68 | 64.43 | 35.57 | 39.66 | 56.63 |
0.18~0.15 | 11.89 | 58.80 | 41.20 | 51.55 | 38.05 |
0.15~0.074 | 21.45 | 39.10 | 60.90 | 73.00 | 46.93 |
0.074~0.065 | 25.34 | 18.27 | 81.73 | 98.34 | 55.05 |
0.065~0.043 | 1.55 | 15.26 | 84.74 | 99.89 | 69.85 |
0.043~0.03 | 0.03 | 3.26 | 96.74 | 99.92 | 71.99 |
<0.03 | 0.07 | 2.87 | 97.13 | 100.00 | 76.28 |
表3 细渣粒度分布
Table 3 Particle size distribution of fine slag
粒级/mm | 产率/% | 烧失量/% | 灰分 含量/% | 累计 产率/% | 筛上灰分/% |
---|---|---|---|---|---|
>0.50 | 3.64 | 47.81 | 52.19 | 3.64 | 52.19 |
0.50~0.25 | 16.34 | 67.71 | 32.29 | 19.98 | 35.36 |
0.25~0.18 | 19.68 | 64.43 | 35.57 | 39.66 | 56.63 |
0.18~0.15 | 11.89 | 58.80 | 41.20 | 51.55 | 38.05 |
0.15~0.074 | 21.45 | 39.10 | 60.90 | 73.00 | 46.93 |
0.074~0.065 | 25.34 | 18.27 | 81.73 | 98.34 | 55.05 |
0.065~0.043 | 1.55 | 15.26 | 84.74 | 99.89 | 69.85 |
0.043~0.03 | 0.03 | 3.26 | 96.74 | 99.92 | 71.99 |
<0.03 | 0.07 | 2.87 | 97.13 | 100.00 | 76.28 |
粒径/mm | 产率/% | 灰分 含量/% | 烧失量/% | 密度/ (g/cm3) | 持水量/% |
---|---|---|---|---|---|
>0.50 | 6.52 | 38.50 | 61.50 | 1.96 | 61.50 |
0.50~0.15 | 32.62 | 24.15 | 75.85 | 2.01 | 77.49 |
0.15~0.074 | 7.83 | 54.56 | 45.44 | 2.11 | 61.07 |
<0.074 | 50.29 | 79.39 | 19.61 | 2.51 | 21.02 |
表4 细渣湿法筛分
Table 4 Fine slag wet screening
粒径/mm | 产率/% | 灰分 含量/% | 烧失量/% | 密度/ (g/cm3) | 持水量/% |
---|---|---|---|---|---|
>0.50 | 6.52 | 38.50 | 61.50 | 1.96 | 61.50 |
0.50~0.15 | 32.62 | 24.15 | 75.85 | 2.01 | 77.49 |
0.15~0.074 | 7.83 | 54.56 | 45.44 | 2.11 | 61.07 |
<0.074 | 50.29 | 79.39 | 19.61 | 2.51 | 21.02 |
样品/mm | 真密度/ (g/cm3) | 比表面积/ (m2/g) | 孔体积/ (cm3/g) |
---|---|---|---|
>0.50-F | 1.84 | 192.20 | 0.16 |
>0.50 | 1.96 | 130.15 | 0.09 |
>0.50-W | 2.27 | 97.45 | 0.10 |
0.50~0.15-F | 1.95 | 407.56 | 0.34 |
0.50~0.15 | 2.01 | 335.38 | 0.06 |
0.50~0.15-W | 2.18 | 222.16 | 0.14 |
0.15~0.074-F | 2.02 | 216.89 | 0.23 |
0.15~0.074 | 2.11 | 183.45 | 0.19 |
0.15~0.074-W | 2.51 | 87.56 | 0.14 |
<0.074-F | 2.39 | 226.09 | 0.25 |
<0.074 | 2.51 | 188.08 | 0.20 |
<0.074-W | 2.55 | 16.67 | 0.18 |
表5 样品物理特性分析
Table 5 Separation sample properties
样品/mm | 真密度/ (g/cm3) | 比表面积/ (m2/g) | 孔体积/ (cm3/g) |
---|---|---|---|
>0.50-F | 1.84 | 192.20 | 0.16 |
>0.50 | 1.96 | 130.15 | 0.09 |
>0.50-W | 2.27 | 97.45 | 0.10 |
0.50~0.15-F | 1.95 | 407.56 | 0.34 |
0.50~0.15 | 2.01 | 335.38 | 0.06 |
0.50~0.15-W | 2.18 | 222.16 | 0.14 |
0.15~0.074-F | 2.02 | 216.89 | 0.23 |
0.15~0.074 | 2.11 | 183.45 | 0.19 |
0.15~0.074-W | 2.51 | 87.56 | 0.14 |
<0.074-F | 2.39 | 226.09 | 0.25 |
<0.074 | 2.51 | 188.08 | 0.20 |
<0.074-W | 2.55 | 16.67 | 0.18 |
叶轮转速/(r/min) | 可燃体 回收率/% | 可燃体 质量分数/% | 综合效率/% |
---|---|---|---|
500 | 20.13 | 74.34 | 5.50 |
1000 | 25.75 | 75.29 | 7.88 |
1500 | 49.33 | 84.01 | 27.77 |
2000 | 51.91 | 76.58 | 18.06 |
2500 | 53.97 | 77.02 | 19.52 |
表6 不同叶轮转速下的宽粒级(>0.074 mm)分级结果
Table 6 The separation results of particle size (>0.074 mm) under different impeller speeds
叶轮转速/(r/min) | 可燃体 回收率/% | 可燃体 质量分数/% | 综合效率/% |
---|---|---|---|
500 | 20.13 | 74.34 | 5.50 |
1000 | 25.75 | 75.29 | 7.88 |
1500 | 49.33 | 84.01 | 27.77 |
2000 | 51.91 | 76.58 | 18.06 |
2500 | 53.97 | 77.02 | 19.52 |
水流速/(10 | 可燃体 回收率/% | 可燃体 质量分数/% | 综合效率/% |
---|---|---|---|
1.54 | 43.34 | 84.11 | 26.71 |
1.93 | 49.33 | 84.01 | 27.77 |
2.31 | 50.16 | 83.56 | 33.31 |
2.70 | 64.24 | 84.68 | 42.79 |
3.09 | 65.85 | 84.44 | 43.39 |
3.47 | 68.57 | 83.29 | 42.79 |
表7 不同水流速下的宽粒级(>0.074 mm)分级结果
Table 7 The separation results of particle size (>0.074 mm) under different water velocities
水流速/(10 | 可燃体 回收率/% | 可燃体 质量分数/% | 综合效率/% |
---|---|---|---|
1.54 | 43.34 | 84.11 | 26.71 |
1.93 | 49.33 | 84.01 | 27.77 |
2.31 | 50.16 | 83.56 | 33.31 |
2.70 | 64.24 | 84.68 | 42.79 |
3.09 | 65.85 | 84.44 | 43.39 |
3.47 | 68.57 | 83.29 | 42.79 |
样品 | 综合效率/% | 可燃体 质量分数/% |
---|---|---|
全粒径细渣 | 18.93 | 55.90 |
先湿筛再逐级分级合计 | 44.35 | 64.45 |
先湿筛再逐级分级合计 (>0.074 mm) 宽粒级 (>0.074 mm) | 40.14 43.39 | 79.57 84.44 |
表8 水流分级实验效率评价
Table 8 Evaluation of water flow classification efficiency
样品 | 综合效率/% | 可燃体 质量分数/% |
---|---|---|
全粒径细渣 | 18.93 | 55.90 |
先湿筛再逐级分级合计 | 44.35 | 64.45 |
先湿筛再逐级分级合计 (>0.074 mm) 宽粒级 (>0.074 mm) | 40.14 43.39 | 79.57 84.44 |
1 | Fan G X, Zhang M Y, Peng W J, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: synergetic cleaner disposal of wastes[J]. Journal of Cleaner Production, 2021, 286: 124943. |
2 | Guo Q H, Li H, Wang S M, et al. Experimental study on preparation of oxygen reduction catalyst from coal gasification residual carbon[J]. Chemical Engineering Journal, 2022, 446: 137256. |
3 | Shen Y, Lu G H, Bai Y H, et al. Structural features of residue carbon formed by gasification of different coal macerals[J]. Fuel, 2022, 320: 123918. |
4 | 张润楠, 范晓晨, 贺明睿, 等. 煤气化废水深度处理与回用研究进展[J]. 化工学报, 2015, 66(9): 3341-3349. |
Zhang R N, Fan X C, He M R, et al. Research progress on deep treatment and reclamation of coal gasification wastewater[J]. CIESC Journal, 2015, 66(9): 3341-3349. | |
5 | Liu X D, Jin Z W, Jing Y H, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
6 | 毕大鹏, 赵勇, 管清亮, 等. 水冷壁气化炉内熔渣流动特性模型[J]. 化工学报, 2015, 66(3): 888-895. |
Bi D P, Zhao Y, Guan Q L, et al. Modeling slag behavior in membrane wall gasifier[J]. CIESC Journal, 2015, 66(3): 888-895. | |
7 | Han R, Zhou A N, Zhang N N, et al. Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: a review[J]. International Journal of Minerals,Metallurgy and Materials, 2024, 31(2): 217-230. |
8 | 孟文亮, 李贵贤, 周怀荣, 等. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
Meng W L, Li G X, Zhou H R, et al. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723. | |
9 | 范宁, 张逸群, 樊盼盼, 等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(8): 145-154. |
Fan N, Zhang Y Q, Fan P P, et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology, 2022, 28(8): 145-154. | |
10 | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
Zhang L H, Jin Y R, Cheng F Q. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. | |
11 | 闫小康, 苏子旭, 王利军, 等. 基于湍流涡调控的煤气化渣炭-灰浮选分离过程强化[J]. 煤炭学报, 2022, 47(3): 1318-1328. |
Yan X K, Su Z X, Wang L J, et al. Process intensification on flotation separation of carbon and ash from coal gasification slag using turbulent eddy regulation[J]. Journal of China Coal Society, 2022, 47(3): 1318-1328. | |
12 | 戚子豪, 钟文琪, 陈曦, 等. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
Qi Z H, Zhong W Q, Chen X, et al. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling[J]. CIESC Journal, 2022, 73(5): 2039-2051. | |
13 | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. |
Qu J S, Zhang J B, Sun Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. | |
14 | 杨进进, 樊盼盼, 樊晓婷, 等. 煤气化细渣碳灰分离技术研究进展[J]. 洁净煤技术, 2023, 29(7): 51-64. |
Yang J J, Fan P P, Fan X T, et al. Research progress of carbon ash separation technology on coal gasification fine slag[J]. Clean Coal Technology, 2023, 29(7): 51-64. | |
15 | 高影, 赵伟, 周安宁, 等. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报, 2022, 50(8): 954-965. |
Gao Y, Zhao W, Zhou A N, et al. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 954-965. | |
16 | Liu D H, Wang W D, Tu Y N, et al. Flotation specificity of coal gasification fine slag based on release analysis[J]. Journal of Cleaner Production, 2022, 363: 132426. |
17 | 程延化. 月桂酸对煤气化细渣浮选的促进作用研究[J]. 现代矿业, 2022, 38(7): 162-167. |
Cheng Y H. Study on the promotion effect of lauric acid on the flotation of coal gasification fine slag[J]. Modern Mining, 2022, 38(7): 162-167. | |
18 | Xue Z H, Dong L P, Li H P, et al. Study on the mechanism of flotation of coal gasification fine slag reinforced with naphthenic acids[J]. Fuel, 2022, 324: 124557. |
19 | Zhu D D, Miao S D, Xue B, et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water Air Soil Pollution, 2019, 230(7): 155. |
20 | 史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(6): 1-10. |
Shi D, Zhang J B, Yang C N, et al. Research progress of the decarburization technology of coal gasification ash slag[J]. Clean Coal Technology, 2020, 26(6): 1-10. | |
21 | 张乾, 高增林, 黄伟, 等. 水介风力分离装置以及煤气化灰渣分离残炭的方法: 115069405B[P]. 2023-05-26. |
Zhang Q, Gao Z L, Huang W, et al. Water medium wind separation device and method for separating coal residue from coal gasification ash: 115069405B[P]. 2023-05-26. | |
22 | 李慧泽, 董连平, 鲍卫仁, 等. 基于视密度的煤气化渣水介质旋流炭-灰分离[J]. 化工进展, 2021, 40(3): 1344-1353. |
Li H Z, Dong L P, Bao W R, et al. Carbon-ash separation of coal gasification slag in swirling water based on apparent density[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1344-1353. | |
23 | 任振玚, 井云环, 樊盼盼, 等. 气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究[J]. 煤炭学报, 2021, 46(4): 1164-1172. |
Ren Z Y, Jing Y H, Fan P P, et al. Experimental study on the water-medium gravity separation of gasification slag and the preparation of desulfurization and denitrification activated coke using separated carbon[J]. Journal of China Coal Society, 2021, 46(4): 1164-1172. | |
24 | 李希铭, 牛胜利, 曲同鑫, 等. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
Li X M, Niu S L, Qu T X, et al. Numerical simulation of solid-liquid flow in stirred tanks based on KTGF model[J]. The Chinese Journal of Process Engineering, 2020, 20(3): 265-275. | |
25 | 王增增, 赖茂河, 陈强, 等. 基于CFD方法的浮选机流场及叶轮动力学研究[J]. 有色金属(选矿部分), 2018(4): 70-77. |
Wang Z Z, Lai M H, Chen Q, et al. Dynamics of impeller and flow field analysis of flotation machine based on CFD method[J]. Nonferrous Metals (Mineral Processing Section), 2018(4): 70-77. | |
26 | 张振鑫. 叶轮转速与颗粒粒径对浮选机内流场影响数值研究[D]. 武汉: 武汉科技大学, 2022. |
Zhang Z X. Numerical study on the effect of impeller speed and particle size on flow field in flotation machine[D]. Wuhan: Wuhan University of Science and Technology, 2022. | |
27 | 孙铭阳. 液固分选流化床数学模型与结构优化研究[D]. 北京: 中国矿业大学, 2017. |
Sun M Y. Mathematical modeling and structure optimizing of liquid-solid fluidized bed separator[D]. Beijing: China University of Mining & Technology, 2017. | |
28 | 郭凡辉, 武建军, 张海军, 等. 煤气化细渣陶瓷膜真空脱水试验与数值模拟[J]. 化工进展, 2022, 41(8): 4047-4056. |
Guo F H, Wu J J, Zhang H J, et al. Coal gasification fine slag vacuum dewatering by ceramic membrane and numerical simulation[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4047-4056. | |
29 | 张迟强, 李延锋, 贺长营, 等. 高灰细泥在TBS分选粗煤泥过程中分布规律研究[J]. 矿山机械, 2015, 43(11): 104-107. |
Zhang C Q, Li Y F, He C Y, et al. Study on distribution laws of high-ash fine slime during separation of coarse coal slime in TBS[J]. Mining & Processing Equipment, 2015, 43(11): 104-107. | |
30 | 王志杰, 赵彦琳, 姚军. Rushton涡轮搅拌槽内流场特性及颗粒运动行为数值模拟[J]. 化工进展, 2021, 40(12): 6479-6489. |
Wang Z J, Zhao Y L, Yao J. Numerical simulation of flow field characteristics and particle motion behavior in Rushton turbine stirred tank[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6479-6489. | |
31 | Yu W, Zhang H L, Wang X B, et al. Enrichment of residual carbon from coal gasification fine slag by spiral separator[J]. Journal of Environmental Management, 2022, 315: 115149. |
[1] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[2] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[3] | 赵帅琪, 张瑞, 黄瀚, 赵昆鹏, 白博峰. 水气转化对超临界水煤气化的抑制特性[J]. 化工学报, 2024, 75(8): 2960-2969. |
[4] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[5] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[6] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[7] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[8] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[9] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[10] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
[11] | 许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911. |
[12] | 汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938. |
[13] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[14] | 李俊, 赵亮, 高金森, 徐春明. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080. |
[15] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 164
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||