1 |
Salvador C A V, Costa F S. Vaporization lengths of hydrazine fuels burning with NTO[J]. Journal of Propulsion and Power, 2006, 22(6): 1362-1372.
|
2 |
Kulkarni S, Bagalkote V, Patil S, et al. Theoretical evaluation and experimental validation of performance parameters of new hypergolic liquid fuel blends with red fuming nitric acid as oxidizer[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 520-525.
|
3 |
Pichon S, Catoire L, Chaumeix N, et al. Search for green hypergolic propellants: gas-phase ethanol/nitrogen tetroxide reactivity[J]. Journal of Propulsion and Power, 2005, 21(6): 1057-1061.
|
4 |
Phillip J, Youngblood S, Grubelich M, et al. Development and testing of a nitrous-oxide/ethanol bi-propellant rocket engine[C]∥52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2016: 5092.
|
5 |
Pasini A, Torre L, Pace G, et al. Pulsed chemical rocket with green high performance propellants[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013: 3756.
|
6 |
Schneider S, Hawkins T, Rosander M, et al. Ionic liquids as hypergolic fuels[J]. Energy & Fuels, 2008, 22(4): 2871-2872.
|
7 |
Kelkar M S, Maginn E J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations[J]. The Journal of Physical Chemistry. B, 2007, 111(18): 4867-4876.
|
8 |
Zhang Q H, Shreeve J M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574.
|
9 |
Zhang Y Q, Shreeve J M. Dicyanoborate-based ionic liquids as hypergolic fluids[J]. Angewandte Chemie, 2011, 50(4): 935-937.
|
10 |
黄实. 新型高能低毒液体推进剂的合成及点火性能研究[D]. 绵阳: 中国工程物理研究院, 2016.
|
|
Huang S. Study on synthesis and ignition performance of new high-energy and low-toxicity liquid propellant[D].Mianyang: China Academy of Engineering Physics, 2016.
|
11 |
Sutton G P. History of Liquid Propellant Rocket Engines[M]. Reston, Virginia.: American Institute of Aeronautics and Astronautics, 2006.
|
12 |
Liu Y, Guo Y, Fei L H, et al. Experimental study on hypergolic ignition and non-ignition for dicyanamide-based ionic liquids at low impact velocity conditions[J]. Energetic Materials Frontiers, 2021, 2(4): 241-248.
|
13 |
He L, Tao G H, Parrish D A, et al. Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels[J]. Chemistry, 2010, 16(19): 5736-5743.
|
14 |
Newsome D A, Vaghjiani G L, Sengupta D. An ab initio based structure property relationship for prediction of ignition delay of hypergolic ionic liquids[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 759-764.
|
15 |
Khomik S V, Usachev S V, Medvedev S P, et al. Ignition characteristics of hypergolic fuels with various N-substituents[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3311-3317.
|
16 |
Li J L, Weng X Y, Tang C L, et al. The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA][J]. Fuel, 2018, 215: 612-618.
|
17 |
杜增晖, 孙策, 李钰潼, 等. 咪唑二氰胺类离子液体在白色发烟硝酸中自燃特性的实验研究[J]. 西安交通大学学报, 2022, 56(4): 13-22.
|
|
Du Z H, Sun C, Li Y T, et al. Experimental study on hypergolic characteristics of imidazolium dicyanamide ionic liquids in white Fuming nitric acid[J]. Journal of Xi’an Jiaotong University, 2022, 56(4): 13-22.
|
18 |
翁欣妍, 杜宗罡, 于君, 等. 含BH3(CN)BH2(CN)-阴离子的离子液体自着火过程的实验研究[J]. 含能材料, 2018, 26(7): 557-564.
|
|
Weng X Y, Du Z G, Yu J, et al. Experimental study of hypergolic process of ionic liquids with BH3(CN)BH2(CN)- anion[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 557-564.
|
19 |
王镜淇, 张星, 陈雪娇, 等. 与硝基氧化剂快速自燃的绿色燃料研究进展[J]. 宇航总体技术, 2022, 6(3): 40-48.
|
|
Wang J Q, Zhang X, Chen X J, et al. Investigation of nitro-oxidizers based green hypergolic fuels with superior low ignition delay[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 40-48.
|
20 |
Munjal N L. Ignition catalysts for furfuryl alcohol-red fuming nitric acid bipropellant[J]. AIAA Journal, 1970, 8(5): 980-981.
|
21 |
Kulkarni S G, Bagalkote V S. Studies on pre-ignition reactions of hydrocarbon-based rocket fuels hypergolic with red fuming nitric acid as oxidizer[J]. Journal of Energetic Materials, 2010, 28(3): 173-188.
|
22 |
Chalmpes N, Bourlinos A B, Talande S, et al. Nanocarbon from rocket fuel waste: the case of furfuryl alcohol-fuming nitric acid hypergolic pair[J]. Nanomaterials, 2020, 11(1): 1.
|
23 |
James O O, Maity S, Usman L A, et al. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural[J]. Energy & Environmental Science, 2010, 3(12): 1833-1850.
|
24 |
Nandiwale K Y, Pande A M, Bokade V V. One step synthesis of ethyl levulinate biofuel by ethanolysis of renewable furfuryl alcohol over hierarchical zeolite catalyst[J]. RSC Advances, 2015, 5(97): 79224-79231.
|
25 |
Bhosale M V K, Kulkarni S G, Kulkarni P S. Ionic liquid and biofuel blend: a low-cost and high performance hypergolic fuel for propulsion application[J]. ChemistrySelect, 2016, 1(9): 1921-1925.
|
26 |
Wu Y T, Wang Z, Fei L H, et al. An experimental study on the hypergolic process enhanced by pre-ignition heat release: [AMIM][DCA]/furfuryl alcohol blends reacting with white fuming nitric acid[J]. Fuel, 2022, 326: 125103.
|
27 |
Sun C G, Tang S K, Zhang X W. Hypergolicity evaluation and prediction of ionic liquids based on hypergolic reactive groups[J]. Combustion and Flame, 2019, 205: 441-445.
|
28 |
Jia F F, Sun K, Zhang P, et al. Marangoni effect on the impact of droplets onto a liquid-gas interface[J]. Physical Review Fluids, 2020, 5(7): 073605.
|
29 |
Maples R E. Petroleum Refinery Process Economics[M]. 2nd ed. Tulsa, Okla.: PennWell Corp., 2000.
|
30 |
Li J L, Fan W, Weng X Y, et al. Experimental observation of hypergolic ignition of superbase-derived ionic liquids[J]. Journal of Propulsion and Power, 2018, 34(1): 125-132.
|
31 |
Weng X Y, Tang C L, Li J L, et al. Coulomb explosion and ultra-fast hypergolic ignition of borohydride-rich ionic liquids with WFNA[J]. Combustion and Flame, 2018, 194: 464-471.
|
32 |
Kim T, Assary R S, Marshall C L, et al. Acid-catalyzed furfuryl alcohol polymerization: characterizations of molecular structure and thermodynamic properties[J]. ChemCatChem, 2011, 3(9): 1451-1458.
|
33 |
Gordon S, Mcbride B. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅰ): Analysis[CP]. NASA Reference Publication 1311, 1994.
|
34 |
Mcbride B, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅱ): User manual and program description[CP]. NASA Reference Publication 1311, 1996.
|