1 |
韩红桂, 赵雅倩, 杨宏燕, 等. 数据驱动的污水处理曝气过程低碳优化控制方法[J]. 北京工业大学学报, 2024, 50(2): 131-139.
|
|
Han H G, Zhao Y Q, Yang H Y, et al. Data-driven optimal control method of low-carbon for waste water treatment aeration process[J]. Journal of Beijing University of Technology, 2024, 50(2): 131-139.
|
2 |
Wang J H, Guo Y, Peng S, et al. Prediction of effluent ammonia nitrogen in wastewater treatment plant based on self-organizing hybrid neural network[J]. Journal of Water Process Engineering, 2024, 59: 104930.
|
3 |
刘壮壮, 鞠然, 刘崇涛, 等. 电化学膜生物反应器处理污水性能提升策略及研究现状[J]. 化工学报, 2023, 74(11): 4433-4444.
|
|
Liu Z Z, Ju R, Liu C T, et al. Strategies for performance enhancement of electrochemical membrane bioreactors for wastewater treatment and current research status[J]. CIESC Journal, 2023, 74(11): 4433-4444.
|
4 |
Mardani S, Baghdadi M, Torabian A, et al. Optimization of ammonia and COD removal from municipal wastewater effluent by electrochemical continuous flow reactor equipped with Ti/RuO2 and Cu foam[J]. Journal of Water Process Engineering, 2023, 55: 104185.
|
5 |
Zhang X Y, Tian J L, Jiang Y S, et al. Direct ammonium recovery from the permeate of a pilot-scale anaerobic MBR by biochar to advance low-carbon municipal wastewater reclamation and urban agriculture[J]. Science of the Total Environment, 2023, 877: 162872.
|
6 |
Wang G P, Dai X H, Zhao S H, et al. Research on ammonia removal from reject water produced from anaerobic digestion of thermally hydrolyzed sludge through partial nitrification-anammox[J]. Water, Air, & Soil Pollution, 2022, 233(4): 106.
|
7 |
蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量[J]. 自动化学报, 2019, 45(5): 906-919.
|
|
Meng X, Qiao J F, Han H G. Soft measurement of key effluent parameters in wastewater treatment process using brain-like modular neural networks[J]. Acta Automatica Sinica, 2019, 45(5): 906-919.
|
8 |
Quan L M, Meng X, Qiao J F. Robust self-constructing fuzzy neural network-based online estimation for industrial product quality[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2213-2222.
|
9 |
Guo X, Li W J, Qiao J F. A self-organizing modular neural network based on empirical mode decomposition with sliding window for time series prediction[J]. Applied Soft Computing, 2023, 145: 110559.
|
10 |
Shin C, Szczuka A, Jiang R J, et al. Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor[J]. Environmental Science: Water Research & Technology, 2021, 7(4): 739-747.
|
11 |
Shahar B, Guttman L. An integrated, two-step biofiltration system with Ulva fasciata for sequenced removal of ammonia and nitrate in mariculture effluents[J]. Algal Research, 2020, 52: 102120.
|
12 |
张璐, 张嘉成, 韩红桂, 等. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225.
|
|
Zhang L, Zhang J C, Han H G, et al. FNN-based process control for biochemical phosphorus in WWTP[J]. CIESC Journal, 2020, 71(3): 1217-1225.
|
13 |
李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336.
|
|
Li Y M, Shi X D, Xiong W L. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336.
|
14 |
Zhou H B, Qiao J F. Soft sensing of effluent ammonia nitrogen using rule automatic formation-based adaptive fuzzy neural network[J]. Desalination and Water Treatment, 2019, 140: 132-142.
|
15 |
Qiao J F, Zhang Z Z, Bo Y C. An online self-adaptive modular neural network for time-varying systems[J]. Neurocomputing, 2014, 125: 7-16.
|
16 |
韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3): 1032-1040.
|
|
Han H G, Chen Z Y, Qiao J F, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040.
|
17 |
Chantilas A, El-Khattabi A R, Gvino E, et al. Interlinkages and gaps: a review of the literature on intergovernmental relations for flood management in the face of climate change[J]. Frontiers in Sustainable Cities, 2023, 5: 1135513.
|
18 |
Dube P J, Vanotti M B, Szogi A A, et al. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology[J]. Waste Management, 2016, 49: 372-377.
|
19 |
Tahmasbi R, Kholghi M, Najarchi M, et al. Post-treatment of reclaimed municipal wastewater through unsaturated and saturated porous media in a large-scale experimental model[J]. Water, 2022, 14(7): 1137.
|
20 |
Moradvandi A, Abraham E, Goudjil A, et al. An identification algorithm of switched Box-Jenkins systems in the presence of bounded disturbances: an approach for approximating complex biological wastewater treatment models[J]. Journal of Water Process Engineering, 2024, 60: 105202.
|
21 |
Qin J, Guo H J. Expert system development on on-line measurement of sewage treatment based process[J]. Sensors & Transducers, 2014, 164: 227-232.
|
22 |
Mirikitani D T, Nikolaev N. Recursive Bayesian recurrent neural networks for time-series modeling[J]. IEEE Transactions on Neural Networks, 2010, 21(2): 262-274.
|
23 |
Piri J, Pirzadeh B, Keshtegar B, et al. Reliability analysis of pumping station for sewage network using hybrid neural networks — genetic algorithm and method of moment[J]. Process Safety and Environmental Protection, 2021, 145: 39-51.
|
24 |
Waqas S, Harun N Y, Sambudi N S, et al. SVM and ANN modelling approach for the optimization of membrane permeability of a membrane rotating biological contactor for wastewater treatment[J]. Membranes, 2022, 12(9): 821.
|
25 |
Li D, Yang C H, Li Y G. A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes[J]. Water Research, 2024, 254: 121347.
|
26 |
Farhi N, Kohen E, Mamane H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632.
|
27 |
Qiao J F, Quan L M, Yang C L. Design of modeling error PDF based fuzzy neural network for effluent ammonia nitrogen prediction[J]. Applied Soft Computing, 2020, 91: 106239.
|
28 |
Meng X, Zhang Y, Quan L M, et al. A self-organizing fuzzy neural network with hybrid learning algorithm for nonlinear system modeling[J]. Information Sciences, 2023, 642: 119145.
|
29 |
Yaqub M, Asif H, Kim S, et al. Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network[J]. Journal of Water Process Engineering, 2020, 37: 101388.
|
30 |
Bhadra S, Sagan V, Skobalski J, et al. End-to-end 3D CNN for plot-scale soybean yield prediction using multitemporal UAV-based RGB images[J]. Precision Agriculture, 2024, 25(2): 834-864.
|
31 |
Yu H H, Yang L, Li D L, et al. A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture[J]. Information Processing in Agriculture, 2021, 8(1): 64-74.
|
32 |
Li J C, Lin S J, Zhang L, et al. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Frontiers of Environmental Science & Engineering, 2023, 18(3): 31.
|
33 |
Eledum H, Awadallah H H. A Monte Carlo study for dealing with multicollinearity and autocorrelation problems in linear regression using two stage ridge regression method[J]. Mathematics and Statistics, 2021, 9(5): 630-638.
|