化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2763-2776.DOI: 10.11949/0438-1157.20240273
朱子良1(), 王爽2, 姜宇昂2, 林梅2, 王秋旺1(
)
收稿日期:
2024-03-06
修回日期:
2024-04-23
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
王秋旺
作者简介:
朱子良(1996—),男,博士研究生,zhuziliang1996@163.com
基金资助:
Ziliang ZHU1(), Shuang WANG2, Yu'ang JIANG2, Mei LIN2, Qiuwang WANG1(
)
Received:
2024-03-06
Revised:
2024-04-23
Online:
2024-08-25
Published:
2024-08-21
Contact:
Qiuwang WANG
摘要:
在固-液相变过程中,外力可导致固体相变材料在液体相变材料中产生相对运动并严重影响相变流动传热。提出一种欧拉-拉格朗日迭代固-液相变算法,创新地将预测固体相对运动的拉格朗日迭代外置耦合于预测相变流动传热的欧拉迭代,能够稳定准确地耦合计算固-液相变的流动传热和固体相变材料的相对运动。采用本算法研究了方腔内的接触熔化过程,探讨不同糊状区系数和重力加速度对本算法的影响规律。结果表明,本算法预测液相体积分数的平均误差为4.93%,固体相对运动预测数值振荡降低51.42%。对于石蜡材料,推荐使用的糊状区系数为1010。增大重力加速度会提高熔化速率并加快相对运动,但对整体趋势影响较小。研究结果可作为相变储能装置的设计参考。
中图分类号:
朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776.
Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration[J]. CIESC Journal, 2024, 75(8): 2763-2776.
工况 | Am / (kg/(m3·s)) | g/(m/s2) | 算法 |
---|---|---|---|
案例0 | 1010 | 9.81 | 焓-多孔 |
案例1 | 1010 | 9.81 | 欧拉-拉格朗日 |
案例2 | 108 | 9.81 | 欧拉-拉格朗日 |
案例3 | 105 | 9.81 | 欧拉-拉格朗日 |
案例4 | 1010 | 29.43 | 欧拉-拉格朗日 |
案例5 | 1010 | 3.72(火星) | 欧拉-拉格朗日 |
表1 数值模拟工况
Table 1 Working conditions of numerical simulations
工况 | Am / (kg/(m3·s)) | g/(m/s2) | 算法 |
---|---|---|---|
案例0 | 1010 | 9.81 | 焓-多孔 |
案例1 | 1010 | 9.81 | 欧拉-拉格朗日 |
案例2 | 108 | 9.81 | 欧拉-拉格朗日 |
案例3 | 105 | 9.81 | 欧拉-拉格朗日 |
案例4 | 1010 | 29.43 | 欧拉-拉格朗日 |
案例5 | 1010 | 3.72(火星) | 欧拉-拉格朗日 |
Ts / K | Tl / K | Tw / K | Pr | Ste | Gr | Ra |
---|---|---|---|---|---|---|
307.65 | 309.15 | 313.15 | 53.30 | 9.55×10-2 | 7.41×104 | 3.95×106 |
表2 流动传热无量纲数
Table 2 Dimensionless numbers of flow and heat transfer
Ts / K | Tl / K | Tw / K | Pr | Ste | Gr | Ra |
---|---|---|---|---|---|---|
307.65 | 309.15 | 313.15 | 53.30 | 9.55×10-2 | 7.41×104 | 3.95×106 |
1 | Li W, Chen W. Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system[J]. Solar Energy, 2019, 188: 706-719. |
2 | Li X Y, Zhu Z L, Xu Z R, et al. A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process[J]. Applied Energy, 2019, 254: 113507. |
3 | Archibold A R, Bhardwaj A, Rahman M M, et al. Comparison of numerical and experimental assessment of a latent heat energy storage module for a high-temperature phase-change material[J]. Journal of Energy Resources Technology, 2016, 138(5): 052007. |
4 | 沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376. |
Shen Y L, Zhang P W, Liu S L. Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC Journal, 2022, 73(10): 4366-4376. | |
5 | 陈子禾, 赵呈志, 冒文莉, 等. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
Chen Z H, Zhao C Z, Mao W L, et al. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon[J]. CIESC Journal, 2022, 73(4): 1817-1825. | |
6 | 尹驰, 张正国, 凌子夜, 等. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
Yin C, Zhang Z G, Ling Z Y, et al. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation[J]. CIESC Journal, 2023, 74(4): 1795-1804. | |
7 | 赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究[D]. 上海: 上海交通大学, 2018: 79-106. |
Zhao Y. Theoretical and experimental study on the heat transfer and storage characteristics of phase change materials and cascaded systems[D]. Shanghai: Shanghai Jiao Tong University, 2018: 79-106. | |
8 | Fu W C, Yan X, Gurumukhi Y, et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting[J]. Nature Energy, 2022, 7: 270-280. |
9 | Hu N, Li Z R, Xu Z W, et al. Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111918. |
10 | Zhao J D, Zhai J, Lu Y H, et al. Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles[J]. International Journal of Heat and Mass Transfer, 2018, 120: 241-249. |
11 | Ma J J, Chen W Z, Xiao H G. Study of contact melting of plate bundles by molten material in severe reactor accidents[J]. Nuclear Engineering and Technology, 2023, 55(11): 4266-4273. |
12 | Kozak Y. Close-contact melting of phase change materials with a non-Newtonian power-law fluid liquid phase—modeling and analysis[J]. Journal of Non-Newtonian Fluid Mechanics, 2023, 318: 105062. |
13 | Fan L W, Zhu Z Q, Zeng Y, et al. Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials (NePCM)[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1057-1069. |
14 | Chen L, Wang L, Wang Y F, et al. Investigation of the characteristics and mechanisms of contact melting and float melting phenomena inside a sphere[J]. Applied Thermal Engineering, 2023, 227: 120327. |
15 | Boroojerdian A, Nemati H, Selahi E. Direct and non-contact measurement of liquid fraction in unconstrained encapsulated PCM melting[J]. Energy, 2023, 284: 129359. |
16 | Chen X D, Li C Z, Yang Z N, et al. Golf-ball-inspired phase change material capsule: experimental and numerical simulation analysis of flow characteristics and thermal performance[J]. Energy, 2024, 293: 130595. |
17 | Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
18 | Assis E, Katsman L, Ziskind G, et al. Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1790-1804. |
19 | Iten M, Liu S L, Shukla A. Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations[J]. Energy, 2018, 155: 495-503. |
20 | Kasibhatla R R, König‑Haagen A, Rösler F, et al. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity[J]. Heat and Mass Transfer, 2017, 53(5): 1735-1744. |
21 | Kozak Y, Ziskind G. Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase[J]. International Journal of Heat and Mass Transfer, 2017, 112: 568-586. |
22 | Shockner T, Ziskind G. Combined close-contact and convective melting in a vertical cylindrical enclosure[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121492. |
23 | Faden M, König-Haagen A, Höhlein S, et al. An implicit algorithm for melting and settling of phase change material inside macrocapsules[J]. International Journal of Heat and Mass Transfer, 2018, 117: 757-767. |
24 | Hummel D, Beer S, Hornung A. A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119205. |
25 | Liao Z R, Chen P J, Tian Z Q, et al. A modified heat capacity method for unconstrained melting inside the spherical capsule for thermal energy storage[J]. Journal of Energy Storage, 2022, 55: 105479. |
26 | Gudibande N, Iyer K. Numerical simulation of contact melting using the cell-splitting modified enthalpy method[J]. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71(1): 84-107. |
27 | Yan Z J, Yang T T, Li S S, et al. Unconstrained melting of phase change material in cylindrical containers inside hot water tanks: numerical investigation and effect of aspect ratios[J]. Journal of Energy Storage, 2022, 47: 103647. |
28 | Tian S, Tan B L, Lin Y C, et al. A Eulerian numerical model to predict the enhancement effect of the gravity-driven motion melting process for latent thermal energy storage[J]. Entropy, 2024, 26(2): 175. |
29 | Stam J. Stable fluids[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. Seattle, United States: ACM Press/Addison, 1999: 121-128. |
30 | Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid-solid interactions: research articles[J]. Computer Animation and Virtual Worlds, 2007, 18(1): 69-82. |
31 | Zhu Z L, Jiang Y A, Wang S, et al. Research on flow/heat transfer and sinking motion coupling mechanism of solid-liquid phase change by Euler-Lagrange iteration algorithm[C]//Proceeding of International Heat Transfer Conference 17.Connecticut: Begellhouse, 2023: 1031. |
32 | Mallya N, Haussener S. Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120525. |
33 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 249-261. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 249-261. | |
34 | 阳祥, 陶文铨. 高瑞利数下封闭腔内自然对流的数值模拟[J]. 西安交通大学学报, 2014, 48(5): 27-31. |
Yang X, Tao W Q. Numerical simulations for natural convection with high Rayleigh number in a tall rectangular cavity[J]. Journal of Xi'an Jiaotong University, 2014, 48(5): 27-31. | |
35 | Ferziger J H, Perić M, Street R L. Computational Methods for Fluid Dynamics[M]. Cham: Springer International Publishing, 2020: 15-16. |
36 | Wang Y, Zhu Z L, Ke H B, et al. Study of ice spike formation mechanism in the water-based phase change energy storage[J]. Journal of Enhanced Heat Transfer, 2023, 30(1): 53-73. |
37 | 张明. 固液相变糊状区内固相颗粒运动的三维数值模拟[D]. 济南: 山东建筑大学, 2023: 6-12. |
Zhang M. Three-dimensional numerical simulation of solid particle movement in solid-liquid mushy region[D]. Jinan: Shandong Jianzhu University, 2023: 6-12. | |
38 | Zeneli M, Malgarinos I, Nikolopoulos A, et al. Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures[J]. Applied Energy, 2019, 242: 837-853. |
[1] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[2] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[3] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[4] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[5] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[6] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[7] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[8] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[9] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[10] | 李洪瑞, 黄纯西, 洪小东, 廖祖维, 王靖岱, 阳永荣. 基于自适应变步长同伦法的循环流程收敛算法[J]. 化工学报, 2024, 75(7): 2604-2612. |
[11] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[12] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[13] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[14] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[15] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 172
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||