23 |
曹健, 冯新, 吉晓燕, 等. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787.
|
|
Cao J, Feng X, Ji X Y, et al. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture[J]. CIESC Journal, 2021, 72(7): 3780-3787.
|
24 |
BP. Statistical Review of World Energy 2023[R]. London: BP, 2023.
|
25 |
Hafez H, Kassim D, Kurda R, et al. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework[J]. Construction and Building Materials, 2021, 281: 122559.
|
26 |
Liu W G, Zuo H B, Wang J S, et al. The production and application of hydrogen in steel industry[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10548-10569.
|
27 |
Yu Q, Liu T J, Zeng Y N, et al. Efficient lipid synthesis of Chlorella pyrenoidosa promoted under heavy metals from electric arc furnace slag[J]. Journal of Cleaner Production, 2023, 414: 137648.
|
28 |
Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the world[J]. Journal of Cleaner Production, 2021, 306: 127259.
|
29 |
Zhang Z S, Mowbray B A W, Parkyn C T E, et al. Cement clinker precursor production in an electrolyser[J]. Energy & Environmental Science, 2022, 15(12): 5129-5136.
|
30 |
Kim W, Sohn I. Critical challenges facing low carbon steelmaking technology using hydrogen direct reduced iron[J]. Joule, 2022, 6(10): 2228-2232.
|
31 |
Zhang C, Xie Y L, Zhang H X, et al. Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system[J]. Energy, 2023, 262: 125453.
|
32 |
Gaur A S, Fitiwi D Z, Curtis J. Heat pumps and our low-carbon future: a comprehensive review[J]. Energy Research & Social Science, 2021, 71: 101764.
|
33 |
陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学(化学), 2011, 41(9): 1540-1547.
|
|
Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J]. Scientia Sinica Chimica, 2011, 41(9): 1540-1547.
|
1 |
IEA. CO2 Emissions in 2023[R]. Paris: IEA, 2024.
|
2 |
Li X, Li T X, Liu L, et al. Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system[J]. Journal of Cleaner Production, 2023, 391: 136119.
|
3 |
Razmi A R, Heydari Afshar H, Pourahmadiyan A, et al. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES)[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101253.
|
4 |
Saberi-Beglar K, Zare K, Seyedi H, et al. Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads[J]. Applied Energy, 2023, 329: 120265.
|
5 |
冯新, 宣爱国, 周彩荣. 化工热力学[M]. 2版. 北京: 化学工业出版社, 2019.
|
|
Feng X, Xuan A G, Zhou C R. Chemical Engineering Thermodynamics[M]. 2nd ed. Beijing: Chemical Industry Press, 2019.
|
6 |
刘畅, 陆小华. 我国碳减排模式探讨: CCS路线与生物甲烷路线的比较[J]. 化工学报, 2013, 64(1): 7-10.
|
|
Liu C, Lu X H. Carbon reduction pattern in China: comparison of CCS and biomethane route[J]. CIESC Journal, 2013, 64(1): 7-10.
|
7 |
Maino G, Lucia U. A thermodynamic approach to the microclimate environment of museums[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 517: 66-72.
|
8 |
Levitin L B, Toffoli T. Thermodynamic cost of reversible computing[C]//2006 IEEE International Symposium on Information Theory. Seattle, WA, USA: IEEE, 2006: 2082-2084.
|
9 |
Hayat M B, Ali D, Monyake K C, et al. Solar energy—a look into power generation, challenges, and a solar-powered future[J]. International Journal of Energy Research, 2019, 43(3): 1049-1067.
|
10 |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838.
|
34 |
曹健, 叶南南, 蒋管聪, 等. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
|
|
Cao J, Ye N N, Jiang G C, et al. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry[J]. CIESC Journal, 2022, 73(6): 2543-2551.
|
35 |
Ji T, Zhai H, Wang C, et al. Microwave-accelerated regeneration of a non-aqueous slurry for energy-efficient carbon sequestration[J]. Materials Today Sustainability, 2022, 19: 100168.
|
36 |
Ji T, Zhai H, Wang C, et al. Energy-efficient and water-saving sorbent regeneration at near room temperature for direct air capture[J]. Materials Today Sustainability, 2023, 21: 100321.
|
37 |
Kor-Bicakci G, Eskicioglu C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 423-443.
|
38 |
Qian H L, Tian H Z, Yang G Q, et al. Microinterface intensification in hydrogenation and air oxidation processes[J]. Chinese Journal of Chemical Engineering, 2022, 50: 292-300.
|
39 |
Sun J N, Zhang L, Liu X M, et al. Coupling model of motion and mass transfer in multicomponent desorption of fine bubbles[J]. Chemical Engineering Journal, 2022, 436: 134999.
|
40 |
Cao J, Jiang G C, Ye N N, et al. Heterogeneous consecutive reaction kinetics of direct oxidation of H2 to H2O2: effect and regulation of confined mass transfer[J]. Chemical Engineering Journal, 2023, 455: 140111.
|
41 |
Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24): 7017-7024.
|
42 |
Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444.
|
43 |
中国石油集团经济技术研究院. 2023年油气行业发展报告[R]. 北京, 2024.
|
|
CNPC. 2023 oil and gas industry development report[R]. Beijing, 2024.
|
44 |
舒印彪, 谢典, 赵良, 等. 碳中和目标下我国再电气化研究[J]. 中国工程科学, 2022, 24(3): 195-204.
|
|
Shu Y B, Xie D, Zhao L, et al. Re-electrification in China under the carbon neutrality goal[J]. Chinese Journal of Engineering Science, 2022, 24(3): 195.
|
45 |
Faust B C. Generation and use of simulated sunlight in photochemical studies of liquid solutions[J]. Review of Scientific Instruments, 1993, 64(2): 577-578.
|
46 |
Yin T Y, Zhang S, Wang Z Y, et al. Effect of laser energy density on microstructural evolution and wear resistance of modified aluminum bronze coatings fabricated by laser cladding[J]. Materials Chemistry and Physics, 2022, 285: 126191.
|
47 |
Dallinger D, Kappe C O. Microwave-assisted synthesis in water as solvent[J]. Chemical Reviews, 2007, 107(6): 2563-2591.
|
48 |
Herrero M A, Kremsner J M, Kappe C O. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry[J]. The Journal of Organic Chemistry, 2008, 73(1): 36-47.
|
49 |
Marchioro A, Teuscher J, Friedrich D, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8: 250-255.
|
50 |
陆小华, 冯新, 吉远辉, 等. 迎接化工热力学的第二个春天[J]. 化工高等教育, 2008, 25(3): 19-21.
|
|
Lu X H, Feng X, Ji Y H, et al. Meeting the second spring of chemical engineering thermodynamics[J]. Higher Education in Chemical Engineering, 2008, 25(3): 19-21.
|
11 |
Chen S Y, Liu J F, Zhang Q, et al. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112537.
|
12 |
Jiang K, Ashworth P, Zhang S Y, et al. China’s carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601.
|
13 |
Mon M T, Tansuchat R, Yamaka W. CCUS technology and carbon emissions: evidence from the United States[J]. Energies, 2024, 17(7): 1748.
|
14 |
Ibrahim N I, Al-Sulaiman F A, Ani F N. Solar absorption systems with integrated absorption energy storage—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610.
|
15 |
Chen X T, Zhang T, Xue X D, et al. A solar-thermal-assisted adiabatic compressed air energy storage system and its efficiency analysis[J]. Applied Sciences, 2018, 8(8): 1390.
|
16 |
Li H, Ma H L, Zhao K, et al. Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations[J]. Energy, 2024, 286: 129520.
|
17 |
Wang X P, Wang J B, Zhang Q, et al. Long-term stability analysis and evaluation of salt cavern compressed air energy storage power plant under creep-fatigue interaction[J]. Journal of Energy Storage, 2022, 55: 105843.
|
18 |
Chen H, Liu X F, Li H Y, et al. Rational designed isostructural MOF for the charge-discharge behavior study of super capacitors[J]. Nano Research, 2022, 15(7): 6208-6212.
|
19 |
Raman S R, Cheng K W E, Xue X D, et al. Hybrid energy storage system with vehicle body integrated super-capacitor and Li-ion battery: model, design and implementation, for distributed energy storage[J]. Energies, 2021, 14(20): 6553.
|
20 |
Hassan Q, Sameen A Z, Salman H M, et al. Hydrogen energy future: advancements in storage technologies and implications for sustainability[J]. Journal of Energy Storage, 2023, 72: 108404.
|
21 |
Xiang C, Xu X W, Zhang S X, et al. Current situation of small and medium-sized pumped storage power stations in Zhejiang Province[J]. Journal of Energy Storage, 2024, 78: 110070.
|
22 |
欧阳明高. 我国新能源与新能源革命[J]. 电气时代, 2024, 1: 24-26.
|
|
Ouyang M G. New energy and new energy revolution in China[J]. Electric Age, 2024, 1: 24-26.
|