化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3730-3741.DOI: 10.11949/0438-1157.20240058
收稿日期:
2024-01-12
修回日期:
2024-05-29
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
张军营
作者简介:
赵国栋(1999—),男,硕士研究生,2577166585@qq.com
基金资助:
Guodong ZHAO(), Zhuo XIONG, Yongchun ZHAO, Junying ZHANG(
)
Received:
2024-01-12
Revised:
2024-05-29
Online:
2024-10-25
Published:
2024-11-04
Contact:
Junying ZHANG
摘要:
碳热还原是垃圾焚烧飞灰中六价铬化合物还原脱毒的有效手段,但碳热还原条件和飞灰的组分变化会影响铬的形态转化。使用竹炭(bamboo charcoal,BC)和粉末活性炭(powered active carbon,PAC)与Na2CrO4反应探索碳热还原中Cr(Ⅵ) 形态转化的过程,并分析碳热反应中4种氧化物对Cr(Ⅵ)形态转化的影响。实验结果表明,1000℃以下Na2CrO4被还原为NaCrO2,高于1000℃则转化为Cr3C2。氧化物存在时,高于1000℃后Fe2O3与被BC还原的铬反应生成FeCr2O4,在CaO含量高时转化为CaCr2O4;若添加过量BC则仍以Cr3C2为主。在喷钙的飞灰中,CaO与被还原的Cr反应生成CaCr2O4;若添加过量的BC,Cr(Ⅵ)则被还原为Cr3C2。
中图分类号:
赵国栋, 熊卓, 赵永椿, 张军营. 焚烧飞灰中六价铬化合物碳热还原脱毒[J]. 化工学报, 2024, 75(10): 3730-3741.
Guodong ZHAO, Zhuo XIONG, Yongchun ZHAO, Junying ZHANG. Detoxification of hexavalent chromium compounds in incineration fly ash by carbothermal reduction[J]. CIESC Journal, 2024, 75(10): 3730-3741.
飞灰 | 氧化物占比/%(质量分数) | |||
---|---|---|---|---|
Al2O3 | SiO2 | CaO | Fe2O3 | |
NJ | 0.77 | 2.24 | 54.55 | 0.3 |
XY | 0.74 | 0.66 | 3.1 | 0.39 |
JN | 0.936 | 1.33 | 22.59 | 0.689 |
表1 飞灰中4种氧化物的占比
Table 1 Percentage of four oxides in fly ash
飞灰 | 氧化物占比/%(质量分数) | |||
---|---|---|---|---|
Al2O3 | SiO2 | CaO | Fe2O3 | |
NJ | 0.77 | 2.24 | 54.55 | 0.3 |
XY | 0.74 | 0.66 | 3.1 | 0.39 |
JN | 0.936 | 1.33 | 22.59 | 0.689 |
样品 | 化学成分/%(质量分数) | 工业分析/%(质量分数) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | MgO | CaO | K2O | Fe2O3 | Al2O3 | M | A | V | FC | |
BC | 12.685 | 4.032 | 6.986 | 47.779 | 4.461 | — | 6.28 | 4.73 | 14.3 | 74.69 |
PAC | 23.183 | 6.722 | 6.936 | 2.771 | 5.993 | 2.668 | 4.13 | 1.23 | 17.75 | 76.89 |
表2 BC和PAC的化学成分和工业分析
Table 2 Chemical compositions and industrial analysis of BC and PAC
样品 | 化学成分/%(质量分数) | 工业分析/%(质量分数) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | MgO | CaO | K2O | Fe2O3 | Al2O3 | M | A | V | FC | |
BC | 12.685 | 4.032 | 6.986 | 47.779 | 4.461 | — | 6.28 | 4.73 | 14.3 | 74.69 |
PAC | 23.183 | 6.722 | 6.936 | 2.771 | 5.993 | 2.668 | 4.13 | 1.23 | 17.75 | 76.89 |
样品 | 比表面积/(m2/g) |
---|---|
BC | 106.5 |
PAC | 1384.4 |
表3 BC和PAC的比表面积
Table 3 Specific surface area of BC and PAC
样品 | 比表面积/(m2/g) |
---|---|
BC | 106.5 |
PAC | 1384.4 |
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | Na2CrO4 | C |
---|---|---|---|---|---|---|
P1 | 1.5 | 1.5 | 1.5 | 1.5 | 6 | 2/8 |
P2 | 0.9 | 0.6 | 0.6 | 3.9 | 6 | 2/8 |
P3 | 0.6 | 0.18 | 0.12 | 5.1 | 6 | 2/8 |
表4 热力学计算参数
Table 4 Thermodynamic calculation parameters
样品 | SiO2 | Al2O3 | Fe2O3 | CaO | Na2CrO4 | C |
---|---|---|---|---|---|---|
P1 | 1.5 | 1.5 | 1.5 | 1.5 | 6 | 2/8 |
P2 | 0.9 | 0.6 | 0.6 | 3.9 | 6 | 2/8 |
P3 | 0.6 | 0.18 | 0.12 | 5.1 | 6 | 2/8 |
1 | Ma G, Garbers-Craig A M. Cr(Ⅵ) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant(part 2): Formation mechanisms and leachability[J]. Ironmaking & Steelmaking, 2006, 33(3): 238-244. |
2 | Mao L Q, Su P, Huang B, et al. Detoxification of solid waste containing Cr(Ⅵ) with phosphate by thermal treatment[J]. Chemical Engineering Journal, 2017, 314: 114-122. |
3 | Aarabi-Karasgani M, Rashchi F, Mostoufi N, et al. Leaching of vanadium from LD converter slag using sulfuric acid[J]. Hydrometallurgy, 2010, 102(1/2/3/4): 14-21. |
4 | Gu P, Diao J, Tan W F, et al. Investigation of the carbothermic reduction of chromium-containing vanadium extraction residue[C]//8th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer, 2017: 747-755. |
5 | Bakhshi N, Sarrafi A, Ramezanianpour A A. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures[J]. Environmental Science and Pollution Research, 2019, 26(20): 20829-20838. |
6 | Wang X, Zhang J D, Wang L L, et al. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): importance of H+ and S O 4 2 - [J]. Journal of Hazardous Materials, 2017, 321: 720-727. |
7 | Yu Y H, An L L, Bae J H, et al. A novel biosorbent from hardwood cellulose nanofibrils grafted with poly(m-aminobenzene sulfonate) for adsorption of Cr(Ⅵ)[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 682070. |
8 | Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. |
9 | Barakat M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377. |
10 | Wang G, Diao J, Liu L, et al. Highly efficient utilization of hazardous vanadium extraction tailings containing high chromium concentrations by carbothermic reduction[J]. Journal of Cleaner Production, 2019, 237: 117832. |
11 | Yoshikawa N, Mashiko K I, Sasaki Y, et al. Microwave carbo-thermal reduction for recycling of Cr from Cr-containing steel making wastes[J]. ISIJ International, 2008, 48(5): 690-695. |
12 | Dai L, Lu Y, Wang X Y, et al. Production of nano-sized chromium carbide powders from Cr2O3/C precursors by direct electrochemical reduction in molten calcium chloride[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 153-159. |
13 | Zhao Z W, Zheng H J, Liu S J, et al. Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 46-50. |
14 | Mahajan M, Rajpoot S, Pandey O P. In-situ synthesis of chromium carbide (Cr3C2) nanopowders by chemical-reduction route[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 113-119. |
15 | Jin K, Jia Y B, Zhao Z W, et al. Synthesis of chromium carbide nanopowders by microwave heating and their composition and microstructure change under gamma ray irradiation[J]. Molecules, 2018, 24(1): 16. |
16 | Orlova N, Abakumov E, Orlova E, et al. Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad Region (Russia)[J]. Journal of Soils and Sediments, 2019, 19(6): 2708-2716. |
17 | Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1): 439-451. |
18 | Morita K, Tsukiashi K, Kimura M, et al. Activity of chromium oxide in CaO-SiO2 based slags at 1873 K[J]. Steel Research International, 2005, 76(4): 279-283. |
19 | Yan B J, Li F, Wang H, et al. Study of chromium oxide activities in EAF slags[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 37-46. |
20 | Rankin W J, Biswas A K. The behaviour of chromium in reduced slag-metal systems[J]. Archiv Für Das Eisenhüttenwesen, 1979, 50(1): 7-11. |
21 | Soltani Panah H. Gibbs free energy change using Ru/Al2O3 catalyst—an application in supercritical water gasification process[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27444-27458. |
22 | Mori T, Yang J, Kuwabara M. Mechanism of carbothermic reduction of chromium oxide[J]. ISIJ International, 2007, 47(10): 1387-1393. |
23 | Berger L M, Stolle S, Gruner W, et al. Investigation of the carbothermal reduction process of chromium oxide by micro- and lab-scale methods[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(2): 109-121. |
24 | Wang X, van Gerven T, Blanpain B, et al. In-situ investigation on the reduction of magnesiochromite with ferrosilicon between 1373— 1573 K[J]. ISIJ International, 2015, 55(11): 2289-2296. |
25 | Wang S C, Lin H T, Nayak P K, et al. Carbothermal reduction process for synthesis of nanosized chromium carbide via metal-organic vapor deposition[J]. Thin Solid Films, 2010, 518(24): 7360-7365. |
26 | Zhang Y L, Liu Y, Wei W J. Carbothermal reduction process of the Fe-Cr-O system[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(10): 931-940. |
27 | Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [ C r ( Ⅵ ) ] : a comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
28 | Xie J L, Wei K, Liu X Q, et al. Effect of carbon type on the detoxification mechanism of hexavalent chromium [ C r ( Ⅵ ) ] by carbothermal reduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108091. |
29 | Xia X, Dahn J R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes[J]. Electrochemical and Solid-State Letters, 2012, 15(1): A1. |
30 | Hu H Y, Shi M Y, Yang Y H, et al. Further insight into the formation and oxidation of CaCr2O4 during solid fuel combustion[J]. Environmental Science & Technology, 2018, 52(4): 2385-2391. |
[1] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
[2] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[3] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[4] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[5] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[6] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[7] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
[8] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[9] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[10] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[11] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[12] | 周辛梓, 李增辉, 孟现阳, 吴江涛. 低温下高纯空气黏度实验研究[J]. 化工学报, 2024, 75(3): 782-788. |
[13] | 王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423. |
[14] | 向腾龙, 王治红, 汪贵, 李龙. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413. |
[15] | 张强, 王宪飞, 王凯, 骆广生, 路忠凯. 非金属催化剂在环氧化物和环状酸酐共聚中的研究进展[J]. 化工学报, 2024, 75(1): 60-73. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 66
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||