化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4348-4358.DOI: 10.11949/0438-1157.20240566
收稿日期:
2024-05-27
修回日期:
2024-08-09
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
陈光进,孙长宇
作者简介:
汤涵(1997—),男,博士研究生,th177450@163.com
基金资助:
Han TANG(), Jin CAI, Haihang QIN, Guangjin CHEN(), Changyu SUN()
Received:
2024-05-27
Revised:
2024-08-09
Online:
2024-11-25
Published:
2024-12-26
Contact:
Guangjin CHEN, Changyu SUN
摘要:
准确预测气体在液相中的溶解度对研究气体水合物的稳定性和分解动力学具有重要意义。采用Valderrama-Patel-Teja状态方程和Wong-Sandler混合规则关联了CH4和CO2在水相中的溶解度数据。为了进一步扩展至电解质溶液体系,考虑了Debye-Hückel静电力作用;由汽液相平衡数据和低压盐析系数拟合了气体-水、气体-电解质的交互作用参数。基于扩展的Patel-Teja状态方程与Chen-Guo水合物模型,预测了水合物共存体系下CH4和CO2在纯水和电解质溶液中的溶解度。结果表明,理论模型计算结果与实验数据具有较好的一致性,纯水体系下二者的平均相对偏差分别为5.740%和3.530%;对于NaCl水溶液体系,其预测的气体溶解度平均相对偏差分别为2.340%和1.990%。模型可为海底CO2水合物法固态封存、CO2置换开采天然气水合物等技术开发提供理论参考。
中图分类号:
汤涵, 蔡进, 覃海航, 陈光进, 孙长宇. 水合物共存体系中气体溶解度预测模型[J]. 化工学报, 2024, 75(11): 4348-4358.
Han TANG, Jin CAI, Haihang QIN, Guangjin CHEN, Changyu SUN. Predictive model on gas solubility in water-rich phase coexisted with gas hydrates[J]. CIESC Journal, 2024, 75(11): 4348-4358.
图2 CO2在纯水中的溶解度文献值与计算值对比dots—literature data[33-34]; lines—calculated results of this work
Fig.2 Comparison of CO2 solubility in water between experimental data and model predictions in this work
图3 CO2在NaCl水溶液中的溶解度文献值与计算值对比dots—literature data[35]; lines—model predictions
Fig.3 Comparison of CO2 solubility in saline solution with different NaCl concentrations between experimental data and model predictions in this work
T/K | p/MPa | Np① | ARD ② /% | Ref. |
---|---|---|---|---|
274.15~284.35 | 3.50~6.50 | 15 | 3.544 | [ |
276.20~281.70 | 5.00~14.30 | 16 | 2.953 | [ |
273.10~278.20 | 4.98~19.35 | 19 | 4.417 | [ |
276.45~294.55 | 10.00~40.00 | 44 | 7.537 | [ |
280.30~280.80 | 10.10~14.30 | 3 | 2.391 | [ |
274.15~286.15 | 6.00~20.00 | 13 | 8.327 | [ |
overall | 110 | 5.740 |
表1 H-Lw两相平衡下CH4在纯水中溶解度计算结果
Table 1 Predicting results of methane solubility in water coexisted with hydrate phase
T/K | p/MPa | Np① | ARD ② /% | Ref. |
---|---|---|---|---|
274.15~284.35 | 3.50~6.50 | 15 | 3.544 | [ |
276.20~281.70 | 5.00~14.30 | 16 | 2.953 | [ |
273.10~278.20 | 4.98~19.35 | 19 | 4.417 | [ |
276.45~294.55 | 10.00~40.00 | 44 | 7.537 | [ |
280.30~280.80 | 10.10~14.30 | 3 | 2.391 | [ |
274.15~286.15 | 6.00~20.00 | 13 | 8.327 | [ |
overall | 110 | 5.740 |
图4 水合物存在条件下甲烷在水相中的溶解度预测值与实验值比较
Fig.4 Comparison of solubility of methane in water between predictions and literature data in the presence of hydrate phase dots—experimental data[36]; lines—predicted results in this work
图5 等温条件下H-Lw两相体系CH4溶解度计算值与文献值对比dots—literature data[15]; lines—model predictions in this work
Fig.5 Comparison of experimental and calculated solubility of methane in water for water-rich-hydrate two-phase system
T/K | p/MPa | Np | ARD/% | Ref. |
---|---|---|---|---|
273.95~283.15 | 2.00~6.00 | 20 | 2.613 | [ |
277.84~280.98 | 4.99~14.20 | 32 | 3.866 | [ |
279.10~281.50 | 10.10~20.10 | 10 | 1.734 | [ |
275.30~281.40 | 2.02~4.00 | 11 | 2.272 | [ |
273.95~282.85 | 2.00~5.00 | 7 | 2.349 | [ |
275.15~281.15 | 1.85~3.97 | 30 | 6.145 | [ |
276.15~282.75 | 30.00 | 9 | 2.995 | [ |
274.06~281.08 | 1.87~23.60 | 30 | 1.997 | [ |
273.95~281.65 | 2.00~3.70 | 8 | 2.320 | [ |
278.60~283.20 | 2.33~7.47 | 8 | 5.951 | [ |
276.15~289.05 | 3.00~90.00 | 24 | 3.977 | [ |
overall | 189 | 3.532 |
表2 H-Lw两相平衡下CO2在纯水中的溶解度计算结果
Table 2 Predicting results of CO2 solubility in water coexisted with the hydrate phase
T/K | p/MPa | Np | ARD/% | Ref. |
---|---|---|---|---|
273.95~283.15 | 2.00~6.00 | 20 | 2.613 | [ |
277.84~280.98 | 4.99~14.20 | 32 | 3.866 | [ |
279.10~281.50 | 10.10~20.10 | 10 | 1.734 | [ |
275.30~281.40 | 2.02~4.00 | 11 | 2.272 | [ |
273.95~282.85 | 2.00~5.00 | 7 | 2.349 | [ |
275.15~281.15 | 1.85~3.97 | 30 | 6.145 | [ |
276.15~282.75 | 30.00 | 9 | 2.995 | [ |
274.06~281.08 | 1.87~23.60 | 30 | 1.997 | [ |
273.95~281.65 | 2.00~3.70 | 8 | 2.320 | [ |
278.60~283.20 | 2.33~7.47 | 8 | 5.951 | [ |
276.15~289.05 | 3.00~90.00 | 24 | 3.977 | [ |
overall | 189 | 3.532 |
图6 水合物共存体系下CO2在纯水中的溶解度实验值与预测值比较dots—literature data[6]; lines—calculated results of this paper
Fig.6 Comparison of CO2 solubility in water between experimental data and model predictions in this work in the presence of hydrate
图7 H-Lw两相体系下CO2溶解度计算值与文献值对比dots—experimental data[8]; lines—model predictions in this work
Fig.7 Comparison of CO2 solubility in water in equilibrium with hydrate under constant pressure conditions between experimental data and model predictions
图8 H-Lw两相体系下CO2溶解度计算值与文献值对比dots—literature data[16,44]; lines—model predictions in this work
Fig.8 Comparison of solubility of CO2 in water between model predictions and literature data in the presence of hydrate (different pressure conditions were represented by various data points in figure)
T/K | p/MPa | Np | Molarity ① /(mol/kg) | ARD/% | Ref. |
---|---|---|---|---|---|
273.15~279.15 | 4.00~6.80 | 10 | 0.529 | 2.860 | [ |
273.15~279.15 | 4.00~6.80 | 10 | 1.092 | 2.206 | [ |
277.80~283.70 | 10.10~15.10 | 8 | 1.000 | 1.785 | [ |
276.25~292.95 | peq② | 15 | 0.558 | 2.695 | [ |
277.46~283.62 | peq | 18 | 0.639 | 2.064 | [ |
overall | 61 | 2.336 |
表3 H-Lw两相平衡下CH4在NaCl水溶液中溶解度计算结果
Table 3 Methane solubility for CH4 + H2O + NaCl in H-Lw two-phase systems
T/K | p/MPa | Np | Molarity ① /(mol/kg) | ARD/% | Ref. |
---|---|---|---|---|---|
273.15~279.15 | 4.00~6.80 | 10 | 0.529 | 2.860 | [ |
273.15~279.15 | 4.00~6.80 | 10 | 1.092 | 2.206 | [ |
277.80~283.70 | 10.10~15.10 | 8 | 1.000 | 1.785 | [ |
276.25~292.95 | peq② | 15 | 0.558 | 2.695 | [ |
277.46~283.62 | peq | 18 | 0.639 | 2.064 | [ |
overall | 61 | 2.336 |
图9 水合物共存体系CH4在NaCl水溶液中溶解度计算值与文献值对比dots—experimental data[45]; solid lines—model predictions in this work; dashed lines—calculated results by CSMHYD software
Fig.9 Comparison of experimental data and model predictions by CSMHYD software and this work for methane solubility in NaCl saline solutions containing CH4 hydrate
图10 CH4在1.0 mol/kg NaCl与水合物共存体系下的溶解度计算值与文献值对比
Fig.10 Comparison of solubility of methane in 1.0 mol/kg NaCl coexisted with hydrate between predictions and literature data dots—experimental data[8]; lines—model predictions in this work
T/K | p/MPa | Np | Molarity | ARD/% | Ref. |
---|---|---|---|---|---|
278.80~280.40 | 10.10~20.10 | 6 | 1.000 | 2.678 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.173 | 1.358 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.529 | 2.048 | [ |
275.95~278.15 | 4.20~8.00 | 13 | 0.639 | 2.615 | [ |
276.34~278.49 | 3.53~21.64 | 13 | 0.620 | 1.621 | [ |
overall | 58 | 1.990 |
表4 H-Lw两相平衡下CO2在NaCl水溶液中的溶解度计算结果
Table 4 CO2 solubility for CO2 + H2O + NaCl in H-Lw two-phase systems
T/K | p/MPa | Np | Molarity | ARD/% | Ref. |
---|---|---|---|---|---|
278.80~280.40 | 10.10~20.10 | 6 | 1.000 | 2.678 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.173 | 1.358 | [ |
273.95~278.05 | 2.00~3.70 | 13 | 0.529 | 2.048 | [ |
275.95~278.15 | 4.20~8.00 | 13 | 0.639 | 2.615 | [ |
276.34~278.49 | 3.53~21.64 | 13 | 0.620 | 1.621 | [ |
overall | 58 | 1.990 |
图11 H-Lw两相平衡下CO2在NaCl水溶液中的溶解度对应温度预测值与文献值对比dots—experimental data[8,41]; solid lines—calculated results using the proposed model in this work; dashed lines—calculated H-Lw-V three-phase equilibrium boundaries by Chen-Guo model
Fig.11 Comparison of temperatures corresponding to specific CO2 solubility in 0.62 mol/kg (a) and 1 mol/kg (b) NaCl at H-Lw equilibrium and predictions in this work
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL: CRC Press, 2008. |
2 | Veluswamy H P, Kumar R, Linga P. Hydrogen storage in clathrate hydrates: current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132. |
3 | Babu P, Linga P, Kumar R, et al. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture[J]. Energy, 2015, 85: 261-279. |
4 | Babu P, Nambiar A, He T B, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107. |
5 | 周守为, 李清平, 朱军龙, 等. CO2海洋封存的思考与新路径探索[J]. 天然气工业, 2024, 44(4): 1-10. |
Zhou S W, Li Q P, Zhu J L, et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry, 2024, 44(4): 1-10. | |
6 | Servio P, Englezos P. Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate[J]. Fluid Phase Equilibria, 2001, 190(1/2): 127-134. |
7 | Someya S, Bando S, Chen B X, et al. Measurement of CO2 solubility in pure water and the pressure effect on it in the presence of clathrate hydrate[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2503-2507. |
8 | Kim Y S, Lim B D, Lee J E, et al. Solubilities of carbon dioxide, methane, and ethane in sodium chloride solution containing gas hydrate[J]. Journal of Chemical & Engineering Data, 2008, 53(6): 1351-1354. |
9 | Abu Hassan M H, Sher F, Zarren G, et al. Kinetic and thermodynamic evaluation of effective combined promoters for CO2 hydrate formation[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103313. |
10 | Najafi M J, Mohebbi V. Solubility measurement of carbon dioxide in water in the presence of gas hydrate[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 738-745. |
11 | Sun Q, Tian H, Li Z Z, et al. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate (part Ⅰ): Experimental measurement[J]. Fluid Phase Equilibria, 2016, 409: 131-135. |
12 | Wang X H, Xu X J, Cai J, et al. CO2 concentration in aqueous solution from gas-liquid equilibrium system to gas-liquid-hydrate coexistence system[J]. Gas Science and Engineering, 2023, 115: 205024. |
13 | Hashemi S, Macchi A, Bergeron S, et al. Prediction of methane and carbon dioxide solubility in water in the presence of hydrate[J]. Fluid Phase Equilibria, 2006, 246(1/2): 131-136. |
14 | Kim Y S, Ryu S K, Yang S O, et al. Liquid water-hydrate equilibrium measurements and unified predictions of hydrate-containing phase equilibria for methane, ethane, propane, and their mixtures[J]. Industrial & Engineering Chemistry Research, 2003, 42(11): 2409-2414. |
15 | Yang S O, Cho S H, Lee H, et al. Measurement and prediction of phase equilibria for water + methane in hydrate forming conditions[J]. Fluid Phase Equilibria, 2001, 185(1/2): 53-63. |
16 | Yang S O, Yang I M, Kim Y S, et al. Measurement and prediction of phase equilibria for water+CO2 in hydrate forming conditions[J]. Fluid Phase Equilibria, 2000, 175(1/2): 75-89. |
17 | Di M Y, Sun R, Geng L T, et al. An accurate model to calculate CO2 solubility in pure water and in seawater at hydrate-liquid water two‐phase equilibrium[J]. Minerals, 2021, 11(4): 393. |
18 | 李遵照, 郭绪强, 田欢. 水合物存在条件下CH4和CO2在溶液中溶解度计算[J]. 化工学报, 2010, 61(6): 1341-1348. |
Li Z Z, Guo X Q, Tian H. Calculation for solubility of methane and carbon dioxide in water in presence of hydrate [J]. CIESC Journal, 2010, 61(6): 1341-1348. | |
19 | Kurihara K, Tochigi K, Kojima K. Mixing rule containing regular-solution and residual excess free energy[J]. Journal of Chemical Engineering of Japan, 1987, 20(3): 227-231. |
20 | Avlonitis D, Danesh A, Todd A C. Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EoS[J]. Fluid Phase Equilibria, 1994, 94: 181-216. |
21 | Huang T, Li C J, Jia W L, et al. Application of equations of state to predict methane solubility under hydrate-liquid water two-phase equilibrium[J]. Fluid Phase Equilibria, 2016, 427: 35-45. |
22 | Chen G J, Guo T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1/2): 43-65. |
23 | Sun C Y, Chen G J. Modelling the hydrate formation condition for sour gas and mixtures[J]. Chemical Engineering Science, 2005, 60(17): 4879-4885. |
24 | 陈光进, 马庆兰, 郭天民. 水合物模型的建立及在含盐体系中的应用[J]. 石油学报, 2000, 21(1): 64-70. |
Chen G J, Ma Q L, Guo T M. A new hydrate model and its extended application in electrolyte containing system[J]. Acta Petrolei Sinica, 2000, 21(1): 64-70. | |
25 | Ma Q L, Chen G J, Guo T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2): 291-302. |
26 | 蔡进, 王晓辉, 汤涵, 等. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415. |
Cai J, Wang X H, Tang H, et al. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution[J]. CIESC Journal, 2023, 74(1): 408-415. | |
27 | Sun Q, Tian H, Guo X Q. Solubility of CO2 in water and NaCl solution in equilibrium with hydrate (part Ⅱ): Model calculation[J]. The Canadian Journal of Chemical Engineering, 2018, 96(2): 620-624. |
28 | Valderrama J O. A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures[J]. Journal of Chemical Engineering of Japan, 1990, 23(1): 87-91. |
29 | Wong D S H, Sandler S I. A theoretically correct mixing rule for cubic equations of state[J]. AIChE Journal, 1992, 38(5): 671-680. |
30 | Li R, Wang X H, Cao B J, et al. Experimental and modeling on hydrate phase equilibrium conditions for hydrogen-containing gas mixtures in pure water and brines[J]. The Journal of Chemical Thermodynamics, 2023, 179: 107001. |
31 | Aasberg-Petersen K, Stenby E, Fredenslund A. Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes[J]. Industrial & Engineering Chemistry Research, 1991, 30(9): 2180-2185. |
32 | 李以圭, 陆九芳. 电解质溶液理论[M]. 北京: 清华大学出版社, 2005. |
Li Y G, Lu J F. Electrolyte Solution Theory[M]. Beijing: Tsinghua University Press, 2005. | |
33 | Wiebe R, Gaddy V L. The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical phenomena[J]. Journal of the American Chemical Society, 1940, 62(4): 815-817. |
34 | Anderson G K. Solubility of carbon dioxide in water under incipient clathrate formation conditions[J]. Journal of Chemical & Engineering Data, 2002, 47(2): 219-222. |
35 | 顾飞燕. 加压下二氧化碳在氯化钠水溶液中的溶解度[J]. 高校化学工程学报, 1998, 12(2): 118-123. |
Gu F Y. Solubility of carbon dioxide in aqueous sodium chloride solution under high pressure[J]. Journal of Chemical Engineering of Chinese Universities, 1998, 12(2): 118-123. | |
36 | Servio P, Englezos P. Measurement of dissolved methane in water in equilibrium with its hydrate[J]. Journal of Chemical & Engineering Data, 2002, 47(1): 87-90. |
37 | Lu W J, Chou I M, Burruss R C. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 412-422. |
38 | Seo Y, Lee H E, Ryu B J. Hydration number and two-phase equilibria of CH4 hydrate in the deep ocean sediments[J]. Geophysical Research Letters, 2002, 29(8): 8-11. |
39 | Bergeron S, Servio P. CO2 and CH4 mole fraction measurements during hydrate growth in a semi-batch stirred tank reactor and its significance to kinetic modeling[J]. Fluid Phase Equilibria, 2009, 276(2): 150-155. |
40 | Aya I, Yamane K, Nariai H. Solubility of CO2 and density of CO2 hydrate at 30 MPa[J]. Energy, 1997, 22(2/3): 263-271. |
41 | Zhang Y, Holder G D, Warzinski R P. Phase equilibrium in two-phase, water-rich-liquid, hydrate systems: experiment and theory[J]. Industrial & Engineering Chemistry Research, 2008, 47(2): 459-469. |
42 | Wang T, Zhang L X, Sun L J, et al. A novel apparatus for measuring gas solubility in aqueous solution under multiphase conditions by isobaric method[J]. Review of Scientific Instruments, 2021, 92(10): 105101. |
43 | Kastanidis P, Romanos G E, Michalis V K, et al. Development of a novel experimental apparatus for hydrate equilibrium measurements[J]. Fluid Phase Equilibria, 2016, 424: 152-161. |
44 | Geng L T, Qu K, Lu W J, et al. In situ Raman spectroscopic study of the pressure effect on the concentration of CO2 in water at hydrate-liquid water equilibrium up to 900 bar[J]. Fluid Phase Equilibria, 2017, 438: 37-43. |
45 | Abdi J, Mohebbi V, Behbahani R M. Mole fraction measurement of methane and ethane in aqueous solutions of NaCl and MgCl2 during hydrate growth[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 307-324. |
46 | Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. |
[1] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[2] | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
[3] | 陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923. |
[4] | 丁叶薇, 康文博, 宋昱潼, 樊钦习, 吉远辉. 吲哚美辛纳米药物筛选及自组装机制的理论研究[J]. 化工学报, 2024, 75(11): 4141-4151. |
[5] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
[6] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[9] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[10] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[11] | 郑立涵, 沈之川, 施志聪. 金属锂固体电解质界面膜的研究进展[J]. 化工学报, 2023, 74(12): 4764-4776. |
[12] | 葛旺鑫, 朱以华, 江宏亮, 李春忠. 二氧化碳电还原的电解质研究进展[J]. 化工学报, 2022, 73(8): 3433-3447. |
[13] | 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250. |
[14] | 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. |
[15] | 门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||