化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4413-4431.DOI: 10.11949/0438-1157.20240376
刘邦金1(), 汪林威1, 吴月月2, 刘永超2, 钟国彬3, 项宏发2(
)
收稿日期:
2024-04-07
修回日期:
2024-07-29
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
项宏发
作者简介:
刘邦金(1987—),男,学士,高级工程师,13926169530@139.com
基金资助:
Bangjin LIU1(), Linwei WANG1, Yueyue WU2, Yongchao LIU2, Guobin ZHONG3, Hongfa XIANG2(
)
Received:
2024-04-07
Revised:
2024-07-29
Online:
2024-12-25
Published:
2025-01-03
Contact:
Hongfa XIANG
摘要:
电池热失控是制约电动汽车和新型规模储能发展的瓶颈,了解电池热失控诱因以及采取相应的应对策略对于提高电池安全性至关重要。首先简要介绍了电池热失控的诱因以及热失控机理;从电池内部热管理和电池外部热管理两个方面重点综述了锂离子电池热管理研究进展。在电池内部关键组件改性策略上重点介绍了正负极材料改性、电解液体系优化和隔膜改性等;在电池外部热管理系统研究上主要介绍了空气冷却、液体冷却和相变材料冷却的三种方法。综合分析表明,电池内部组分是电池产热和抑制热失控源头,减少电极产热并提高材料热稳定性、电解液中引入功能添加剂及开发固态电解质、提高隔膜热稳定性及开发阻燃功能等策略有助于提高电池本身的安全性;通过液体冷却以及结合相变材料冷却的电池热管理系统及时散热和维持电池在适宜温度中安全运行同样重要。
中图分类号:
刘邦金, 汪林威, 吴月月, 刘永超, 钟国彬, 项宏发. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431.
Bangjin LIU, Linwei WANG, Yueyue WU, Yongchao LIU, Guobin ZHONG, Hongfa XIANG. Advances in thermal management of lithium-ion batteries[J]. CIESC Journal, 2024, 75(12): 4413-4431.
15 | Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267. |
16 | 王怡, 陈学兵, 王愿习, 等. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094. |
Wang Y, Chen X B, Wang Y X, et al. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. | |
17 | Feng X N, Fang M, He X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
18 | Choi J U, Voronina N, Sun Y K, et al. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow[J]. Advanced Energy Materials, 2020, 10(42): 2002027. |
19 | Wang Y Y, Sun Y Y, Liu S, et al. Na-doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(8): 3881-3889. |
20 | Ji W X, Wang F, Liu D T, et al. Building thermally stable Li-ion batteries using a temperature-responsive cathode[J]. Journal of Materials Chemistry A, 2016, 4(29): 11239-11246. |
21 | Hu S K, Cheng G H, Cheng M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2009, 188(2): 564-569. |
22 | Cho W, Kim S M, Song J H, et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J]. Journal of Power Sources, 2015, 282: 45-50. |
23 | Li G, Yang Z X, Yang W S. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2008, 183(2): 741-748. |
24 | Cho W, Kim S M, Lee K W, et al. Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties[J]. Electrochimica Acta, 2016, 198: 77-83. |
25 | Yun S H, Park K S, Park Y J. The electrochemical property of ZrF x -coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material[J]. Journal of Power Sources, 2010, 195(18): 6108-6115. |
26 | Wang L P, Zhang X D, Wang T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24): 1801528. |
27 | Sun Y K, Chen Z H, Noh H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. |
28 | Pang P P, Tan X X, Wang Z, et al. Crack-free single-crystal LiNi0.83Co0.10Mn0.07O2 as cycling/thermal stable cathode materials for high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2021, 365: 137380. |
29 | 程伟江, 汪何琦, 高翔, 等. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
Cheng W J, Wang H Q, Gao X, et al. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 571-584. | |
30 | 张佳怡, 翁素婷, 王兆翔, 等. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
Zhang J Y, Weng S T, Wang Z X, et al. Solid electrolyte interphase(SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. | |
31 | Jung Y S, Cavanagh A S, Riley L, et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries[J]. Advanced Materials, 2010, 22(19): 2172-2176. |
32 | Baginska M, Blaiszik B J, Merriman R J, et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres[J]. Advanced Energy Materials, 2012, 2(5): 583-590. |
33 | Liu Q, Meng T, Yu L, et al. Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries[J]. Small Methods, 2022, 6(7): 2200380. |
34 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
35 | Tian X L, Yi Y K, Fang B R, et al. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries[J]. Chemistry of Materials, 2020, 32(23): 9821-9848. |
36 | Kalhoff J, Eshetu G G, Bresser D, et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175. |
37 | Zheng Q F, Yamada Y, Shang R, et al. A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020, 5: 291-298. |
38 | Tan S J, Yue J P, Hu X C, et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie, 2019, 131(23): 7884-7889. |
39 | Zhu Y M, Luo X Y, Zhi H Z, et al. Diethyl(thiophen-2-ylmethyl)phosphonate: a novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of Materials Chemistry A, 2018, 6(23): 10990-11004. |
40 | Benmayza A, Lu W Q, Ramani V, et al. Electrochemical and thermal studies of LiNi0.8Co0.15Al0.015O2 under fluorinated electrolytes[J]. Electrochimica Acta, 2014, 123: 7-13. |
41 | Zeng Z Q, Wu B B, Xiao L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015, 279: 6-12. |
42 | Liu J W, Song X, Zhou L, et al. Fluorinated phosphazene derivative — a promising electrolyte additive for high voltage lithium ion batteries: from electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46: 404-414. |
43 | Leonet O, Colmenares L C, Kvasha A, et al. Improving the safety of lithium-ion battery via a redox shuttle additive 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB)[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9216-9219. |
44 | Xia L, Wang D D, Yang H X, et al. An electrolyte additive for thermal shutdown protection of Li-ion batteries[J]. Electrochemistry Communications, 2012, 25: 98-100. |
45 | Jiang J W, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6 [J]. Electrochimica Acta, 2004, 49(26): 4599-4604. |
46 | Jiang Z T, Zhang L X, Chen J, et al. Analysis of the amino acid effect on protein folding by atom pair contacts[J]. Polymer, 2004, 45(2): 609-621. |
47 | Liu K X, Wang Z Y, Shi L Y, et al. Ionic liquids for high performance lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 59: 320-333. |
48 | Garcia B, Lavallée S, Perron G, et al. Room temperature molten salts as lithium battery electrolyte[J]. Electrochimica Acta, 2004, 49(26): 4583-4588. |
49 | Sakaebe H, Matsumoto H, Tatsumi K. Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation-effect of the structure [J]. Journal of Power Sources, 2005, 146(1/2): 693-697. |
50 | Zhang S J, Li J H, Jiang N Y, et al. Rational design of an ionic liquid-based electrolyte with high ionic conductivity towards safe lithium/lithium-ion batteries[J]. Chemistry, an Asian Journal, 2019, 14(16): 2810-2814. |
51 | Zhao Y, Wang L, Zhou Y, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries[J]. Advancef Science, 2021, 8(7): 2003675. |
52 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
Li H. All-solid lithium batteries: dreams may come[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. | |
53 | Zheng Y, Yao Y Z, Ou J H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. |
54 | Lu Y, Meng X Y, Alonso J A, et al. Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2042-2049. |
55 | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
56 | Ye T T, Li L H, Zhang Y. Recent progress in solid electrolytes for energy storage devices[J]. Advanced Functional Materials, 2020, 30(29): 2000077. |
57 | Chen R S, Li Q H, Yu X Q, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
58 | Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(23): 9134-9142. |
1 | 现代院能源安全研究中心课题组. 国际碳中和发展态势及前景[J]. 现代国际关系, 2022(2): 20-28, 62. |
CICIR Energy Security Task Force. Development and prospect of international carbon neutrality[J]. Contemporary International Relations, 2022(2): 20-28, 62. | |
2 | 杜伯尧, 全贞花, 侯隆澍, 等. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374. |
Du B Y, Quan Z H, Hou L S, et al. Performance of direct-expansion photovoltaic/thermal(PV/T)-air source heat pump system[J]. CIESC Journal, 2020, 71(S1): 368-374. | |
3 | 吴长元 吴杰康, 翁子豪, 等. 新能源配电网多类型有功无功电源容量协同优化[J]. 广东电力, 2018, 31(3): 98-108. |
Wu C Y, Wu J K, Weng Z H, et al. Collaborative optimization on multi-typed active and reactive power source capacities of new energy power distribution network[J]. Guangdong Electric Power, 2018, 31(3): 98-108. | |
4 | 吴仁光, 郑立, 李凯鹏, 等. 面向综合能源配电网的储能系统优化配置方法[J]. 广东电力, 2020, 33(3): 42-50. |
Wu R G, Zheng L, Li K P, et al. Optimized configuration method of energy storage system for integrated energy distribution network[J]. Guangdong Electric Power, 2020, 33(3): 42-50. | |
5 | Huang Y M, Li J. Key challenges for grid-scale lithium-ion battery energy storage[J]. Advanced Energy Materials, 2022, 12(48) : 2202197. |
6 | Fallahifar R, Kalantar M. Optimal planning of lithium ion battery energy storage for microgrid applications: considering capacity degradation[J]. Journal of Energy Storage, 2023, 57: 106103. |
7 | Tete P R, Gupta M M, Joshi S S. Developments in battery thermal management systems for electric vehicles: a technical review[J]. Journal of Energy Storage, 2021, 35: 102255. |
8 | Kumar P, Chaudhary D, Varshney P, et al. Critical review on battery thermal management and role of nanomaterial in heat transfer enhancement for electrical vehicle application[J]. Journal of Energy Storage, 2020, 32: 102003. |
59 | Shi C, Zhang P, Huang S H, et al. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries[J]. Journal of Power Sources, 2015, 298: 158-165. |
60 | Lee J, Lee C L, Park K, et al. Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries[J]. Journal of Power Sources, 2014, 248: 1211-1217. |
61 | Liu K, Liu W, Qiu Y C, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances, 2017, 3(1): e1601978. |
62 | Lei T Y, Chen W, Hu Y, et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(32): 1802441. |
63 | Liu J W, Li H, Li W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2020, 164: 114421. |
64 | 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355. |
Wang F, Wang J M, Shao S Q. Analysis multi-stage heat transfer process of data center cooling system from the temperature difference[J]. CIESC Journal, 2021, 72(S1): 348-355. | |
65 | Bandhauer T M, Garimella S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change [J]. Applied Thermal Engineering, 2013, 61(2): 756-769. |
66 | Fayaz H, Afzal A, Samee A D M, et al. Optimization of thermal and structural design in lithium-ion batteries to obtain energy efficient battery thermal management system (BTMS): a critical review[J]. Archives of Computational Methods in Engineering: State of the Art Reviews, 2022, 29(1): 129-194. |
67 | Al-Zareer M, Dincer I, Rosen M A. A review of novel thermal management systems for batteries[J]. International Journal of Energy Research, 2018, 42(10): 3182-3205. |
68 | Liu R, Chen J X, Xun J Z, et al. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132: 288-297. |
69 | Park S, Jung D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle[J]. Journal of Power Sources, 2013, 227: 191-198. |
70 | Qu Z G, Li W Q, Tao W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913. |
71 | Pesaran S, Rehn R, Swan D, et al. Thermal analysis and performance of a battery pack for a hybrid electric vehicle[R]. Brussels, Belgium: National Renewable Energy Laboratory, 1998. |
72 | Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36. |
73 | Kang D, Lee P Y, Yoo K, et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27: 101017. |
74 | Fan Y Q, Bao Y, Ling C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155: 96-109. |
75 | Xia G D, Cao L, Bi G L. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105. |
76 | Kelly K J, Mihalic M, Zolot M. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing[C]//Seventeenth Annual Battery Conference on Applications and Advances. Long Beach, CA, USA: IEEE, 2002: 247-252. |
77 | E J Q, Han D D, Qiu A, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system[J]. Applied Thermal Engineering, 2018, 132: 508-520. |
78 | 邓均锐, 李泽宇, 陈嘉衍. 面向动力电池热安全的准被动式热移出系统[J]. 化工学报, 2023, 74(11): 4679-4687. |
Deng J R, Li Z Y, Chen J Y. Pseudo-passive heat removal system for thermal safety of power battery[J]. CIESC Journal, 2023, 74(11): 4679-4687. | |
79 | Zhao C Y, Zhang B L, Zheng Y M, et al. Hybrid battery thermal management system in electrical vehicles: a review[J] 2020, 13(23): 6257. |
80 | Saw L H, Tay A A O, Zhang L W. Thermal management of lithium-ion battery pack with liquid cooling[C]//2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). San Jose, CA, USA: IEEE, 2015: 298-302. |
81 | Deng Y W, Feng C L, Jiaqiang E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
82 | Pesaran A. Battery thermal management in EV and HEVs: issues and solutions[J]. Battery Man, 2001, 43(5): 34-49. |
83 | Beheshti A, Shanbedi M, Heris S Z. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1451-1460. |
84 | Karimi G, Dehghan A R. Thermal analysis of high-power lithium-ion battery packs using flow network approach[J]. International Journal of Energy Research, 2014, 38(14): 1793-1811. |
85 | Wu W X, Wang S F, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
86 | Madhusudana C V. Special topics in thermal contact conductance[M]//Thermal Contact Conductance. New York: Springer, 1996: 101-150. |
87 | Chung Y, Kim M S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J]. Energy Conversion and Management, 2019, 196: 105-116. |
88 | 吴延鹏, 刘乾隆, 田东民, 等. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
Wu Y P, Liu Q L, Tian D M, et al. A review of coupling PCM modules with heat pipes for electronic thermal management[J]. CIESC Journal, 2023, 74(S1): 25-31. | |
89 | Liu C C, Xu D J, Weng J W, et al. Phase change materials application in battery thermal management system: a review[J]. Materials, 2020, 13(20): 4622. |
90 | Lari M O, Sahin A Z. Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications[J]. Renewable Energy, 2018, 122: 98-107. |
91 | Paris J, Falardeau M, Villeneuve C. Thermal storage by latent heat: a viable option for energy conservation in buildings[J]. Energy Sources, 1993, 15(1): 85-93. |
9 | Rao Z H, Wang S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. |
10 | Song L B, Zheng Y H, Xiao Z L, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30-46. |
11 | Liu H Q, Wei Z B, He WD, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion and Management, 2017, 150: 304-330. |
12 | Yang S C, Lin J Y, Zhang Z J, et al. Advanced engineering materials for enhancing thermal management and thermal safety of lithium-ion batteries: a review[J]. Frontiers in Energy Research, 2022, 10: 949760. |
13 | 梁坤峰, 王莫然, 高美洁, 等. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502. |
Liang K F, Wang M R, Gao M J, et al. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle[J]. CIESC Journal, 2021, 72(S1): 494-502. | |
14 | Xu B, Lee J, Kwon D, et al. Mitigation strategies for Li-ion battery thermal runaway: a review [J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
92 | Feldman D, Shapiro M M, Banu D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar Energy Materials, 1989, 18(3/4): 201-216. |
93 | Sarı A, Kaygusuz K. Thermal and heat transfer characteristics in a latent heat storage system using lauric acid[J]. Energy Conversion and Management, 2002, 43(18): 2493-2507. |
94 | Hasnain S M. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques [J]. Energy Conversion and Management, 1998, 39(11): 1127-1138. |
95 | Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
96 | Khare S, Dell'Amico M, Knight C, et al. Selection of materials for high temperature latent heat energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 107: 20-27. |
97 | Ge H S, Li H Y, Mei S F, et al. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 331-346. |
98 | Sarı A, Karaipekli A. Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material [J]. Materials Letters, 2008, 62(6/7): 903-906. |
99 | Lane G A. Low temperature heat storage with phase change materials[J]. International Journal of Ambient Energy, 1980, 1(3): 155-168. |
100 | Tyagi P K, Kumar R, Said Z. Recent advances on the role of nanomaterials for improving the performance of photovoltaic thermal systems: trends, challenges and prospective[J]. Nano Energy, 2022, 93: 106834. |
101 | Amirahmad A, Maglad A M, Mustafa J, et al. Loading PCM into buildings envelope to decrease heat gain-performing transient thermal analysis on nanofluid filled solar system[J]. Frontiers in Energy Research, 2021, 9: 727011. |
102 | Lv Y F, Yang X Q, Zhang G Q. Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles[J]. Applied Thermal Engineering, 2020, 179: 115747. |
103 | Babapoor A, Azizi M, Karimi G. Thermal management of a Li-ion battery using carbon fiber-PCM composites [J]. Applied Thermal Engineering, 2015, 82: 281-290. |
104 | 安治国, 陈星, 赵琳. PCM/液冷复合式锂电池组热管理[J]. 储能科学与技术, 2019, 8(5): 915-921. |
An Z G, Chen X, Zhao L. Numerical investigation on integrated thermal management for lithium-ion battery pack with phase change material and liquid cooling [J]. Energy Storage Science and Technology, 2019, 8(5): 915-921. | |
105 | Cicconi P, Kumar P, Varshney P. A support approach for the modular design of Li-ion batteries: a test case with PCM[J]. Journal of Energy Storage, 2020, 31: 101684. |
106 | Huang Q Q, Li X X, Zhang G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering, 2018, 141: 1092-1100. |
[1] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
[2] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[3] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[4] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
[5] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
[6] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[7] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[8] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
[9] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[10] | 白炳林, 杜燊, 李明佳, 张传琪. 基于水相剥离的单壁碳纳米管薄膜透光和导电特性[J]. 化工学报, 2024, 75(7): 2680-2687. |
[11] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[12] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[13] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[14] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[15] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 538
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||