化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4413-4431.DOI: 10.11949/0438-1157.20240376

• 综述与专论 • 上一篇    下一篇

锂离子电池热管理研究进展

刘邦金1(), 汪林威1, 吴月月2, 刘永超2, 钟国彬3, 项宏发2()   

  1. 1.南方电网调峰调频(广东)储能科技有限公司,广东 广州 511400
    2.合肥工业大学材料科学与工程学院,安徽 合肥 230009
    3.南方电网电力科技股份有限公司,广东 广州 510080
  • 收稿日期:2024-04-07 修回日期:2024-07-29 出版日期:2024-12-25 发布日期:2025-01-03
  • 通讯作者: 项宏发
  • 作者简介:刘邦金(1987—),男,学士,高级工程师,13926169530@139.com
  • 基金资助:
    国家自然科学基金项目(52072105)

Advances in thermal management of lithium-ion batteries

Bangjin LIU1(), Linwei WANG1, Yueyue WU2, Yongchao LIU2, Guobin ZHONG3, Hongfa XIANG2()   

  1. 1.CSG Power Generation (Guangdong) Energy Storage Technology Co. , Ltd. , Guangzhou 511400, Guangdong, China
    2.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
    3.China Southern Power Grid Technology Co. , Ltd. , Guangzhou 510080, Guangdong, China
  • Received:2024-04-07 Revised:2024-07-29 Online:2024-12-25 Published:2025-01-03
  • Contact: Hongfa XIANG

摘要:

电池热失控是制约电动汽车和新型规模储能发展的瓶颈,了解电池热失控诱因以及采取相应的应对策略对于提高电池安全性至关重要。首先简要介绍了电池热失控的诱因以及热失控机理;从电池内部热管理和电池外部热管理两个方面重点综述了锂离子电池热管理研究进展。在电池内部关键组件改性策略上重点介绍了正负极材料改性、电解液体系优化和隔膜改性等;在电池外部热管理系统研究上主要介绍了空气冷却、液体冷却和相变材料冷却的三种方法。综合分析表明,电池内部组分是电池产热和抑制热失控源头,减少电极产热并提高材料热稳定性、电解液中引入功能添加剂及开发固态电解质、提高隔膜热稳定性及开发阻燃功能等策略有助于提高电池本身的安全性;通过液体冷却以及结合相变材料冷却的电池热管理系统及时散热和维持电池在适宜温度中安全运行同样重要。

关键词: 锂离子电池, 电化学, 热力学, 热管理, 纳米材料, 冷却系统

Abstract:

Battery thermal runaway is a bottleneck in the development of electric vehicles and new-scale energy storage, and it is crucial to understand the triggers of battery thermal runaway and adopt corresponding countermeasure strategies to improve the battery safety. This paper first briefly introduces the causes and mechanisms of thermal runaway of batteries. Through the discussion of recent related literature, the research progress of thermal management of lithium-ion batteries is reviewed from two aspects: internal thermal management of batteries and external thermal management of batteries. The key component modification strategies inside the battery focus on cathode and anode material modification, electrolyte system optimization and separator modification, etc. In the study of the external battery thermal management system, three main methods of air cooling, liquid cooling, and phase change material cooling are introduced. Comprehensive analysis shows that the battery internal components are the source of heat generation and inhibition of thermal runaway, reduce the electrode heat generation and improve the material thermal stability, introduce functional additives and develop solid electrolyte, improve the separator thermal stability and develop flame retardant function to help improve the battery intrinsic safety. Battery thermal management systems through liquid cooling as well as combined with phase change material cooling are equally important in maintaining safe battery operation at the appropriate temperature.

Key words: lithium-ion batteries, electrochemistry, thermodynamics, thermal management, nanomaterials, cooling system

中图分类号: