化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4702-4711.DOI: 10.11949/0438-1157.20240276
马治东1(), 张亚鹏2, 高慧鹏3, 李文强4, 吕波2, 秦磊4, 张全3(
), 李春1,2,4(
)
收稿日期:
2024-03-07
修回日期:
2024-08-08
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
张全,李春
作者简介:
马治东(2000—),男,硕士研究生,zhidong_mashz@163.com
基金资助:
Zhidong MA1(), Yapeng ZHANG2, Huipeng GAO3, Wenqiang LI4, Bo LYU2, Lei QIN4, Quan ZHANG3(
), Chun LI1,2,4(
)
Received:
2024-03-07
Revised:
2024-08-08
Online:
2024-12-25
Published:
2025-01-03
Contact:
Quan ZHANG, Chun LI
摘要:
α-红没药烯是一种主要存在于红没药、柠檬等植物精油中的倍半萜化合物,因具备多支链、环状结构,其烷化产物红没药烷可作为航空燃料替代品,受到了国内外的广泛关注。以酿酒酵母为底盘细胞来合成α-红没药烯是一种绿色、可持续的备选生产方式。本研究在强化甲羟戊酸(mevalonate,MVA)合成途径的酿酒酵母中表达来自北美冷杉的α-红没药烯合酶AgBIS,利用葡萄糖诱导型启动子P HXT1 对支路鲨烯合酶及脂肪酸合成途径进行动态下调,进一步系统增强MVA途径多个基因表达,并对辅因子供应与乙醇利用途径进行强化,使α-红没药烯在摇瓶中的产量达到510 mg/L。在3 L发酵罐中,通过乙醇补料发酵使α-红没药烯产量达到16.5 g/L,为目前报道的最高产量。本研究为微生物细胞工厂高效合成α-红没药烯提供了有效策略。
中图分类号:
马治东, 张亚鹏, 高慧鹏, 李文强, 吕波, 秦磊, 张全, 李春. 高能燃料前体α-红没药烯的生物制造过程优化[J]. 化工学报, 2024, 75(12): 4702-4711.
Zhidong MA, Yapeng ZHANG, Huipeng GAO, Wenqiang LI, Bo LYU, Lei QIN, Quan ZHANG, Chun LI. Optimization of biomanufacturing process of high-energy fuel precursor α-bisabolene[J]. CIESC Journal, 2024, 75(12): 4702-4711.
图1 酿酒酵母中α-红没药烯生物合成途径及本研究的构建策略HMG-CoA—hydroxymethylglutaryl-CoA,羟甲基戊二酰辅酶A;IPP—isopentenyl pyrophosphate,异戊二烯焦磷酸;DMAPP—dimethylallyl pyrophosphate,二甲基烯丙基焦磷酸;GPP—geranyl pyrophosphate,香叶基焦磷酸;FPP—farnesyl diphosphate,法尼基焦磷酸
Fig.1 Biosynthetic pathway and construction strategy of α-bisabolene in S. cerevisiae
质粒/菌株 | 基因型 | 来源 | |
---|---|---|---|
酿酒酵母 | S59 | CEN.PK2-1D, ΔGal80:: P Gal10 -IDI1 (L141H,Y195F,W356C )-T PGI1, P Gal1-tHMG1-T CYC3 | 课题组构建 |
BS-GbTPS | S59, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-PaTPS5 | S59, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
BS-NvTPS | S59, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-RcTPS | S59, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
BS1 | S59, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
BS2 | BS1, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 本研究构建 | |
BS3 | BS2, ΔACC1::P HXT1 -ACC1-T ACC1 | 本研究构建 | |
BS9 | BS3, ΔLPP1, ΔDPP1:: P Gal1 -UPC2-1-T GPD1 | 本研究构建 | |
BS11 | BS3, Δ308a:: P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 本研究构建 | |
BS11-174 | BS11, ΔGRE3:: PTEF1 -t17POS5-T CPS1 -TRP1 | 本研究构建 | |
BS11-A22 | BS11, ΔGDH1:: P TEF1-GDH2-T PGK1 | 本研究构建 | |
BS13 | BS11, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 本研究构建 | |
BS14 | BS13, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 本研究构建 | |
BS17-A1 | BS14, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1, Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
BS17-A2 | BS17-A1, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10-ERG10-T VMA2 | 本研究构建 | |
质粒 | A1 | pUC19, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 |
A2 | pUC19, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
A3 | pUC19, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
A4 | pUC19, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
A5 | pUC19, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
A8 | pUC19, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 课题组构建 | |
A9 | pUC19, ΔACC1:: P HXT1 -ACC1-T ACC1 | 本研究构建 | |
A11 | pUC19, Δ308a::P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 课题组构建 | |
A12 | pUC19, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 课题组构建 | |
A13 | pUC19, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 课题组构建 | |
A14 | pUC19, ΔGDH1::P TEF1-GDH2-T PGK1 | 本研究构建 | |
A15 | pUC19, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1 | 课题组构建 | |
A16 | pUC19, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10 -ERG10-T VMA2 | 课题组构建 | |
A17 | pUC19,Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
A18 | pUC19,ΔDPP1::P Gal1 -UPC2-1-T GPD1 | 本研究构建 |
表1 本研究涉及的质粒及酵母菌株
Table 1 Plasmids and yeast strains involved in this study
质粒/菌株 | 基因型 | 来源 | |
---|---|---|---|
酿酒酵母 | S59 | CEN.PK2-1D, ΔGal80:: P Gal10 -IDI1 (L141H,Y195F,W356C )-T PGI1, P Gal1-tHMG1-T CYC3 | 课题组构建 |
BS-GbTPS | S59, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-PaTPS5 | S59, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
BS-NvTPS | S59, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-RcTPS | S59, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
BS1 | S59, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
BS2 | BS1, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 本研究构建 | |
BS3 | BS2, ΔACC1::P HXT1 -ACC1-T ACC1 | 本研究构建 | |
BS9 | BS3, ΔLPP1, ΔDPP1:: P Gal1 -UPC2-1-T GPD1 | 本研究构建 | |
BS11 | BS3, Δ308a:: P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 本研究构建 | |
BS11-174 | BS11, ΔGRE3:: PTEF1 -t17POS5-T CPS1 -TRP1 | 本研究构建 | |
BS11-A22 | BS11, ΔGDH1:: P TEF1-GDH2-T PGK1 | 本研究构建 | |
BS13 | BS11, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 本研究构建 | |
BS14 | BS13, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 本研究构建 | |
BS17-A1 | BS14, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1, Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
BS17-A2 | BS17-A1, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10-ERG10-T VMA2 | 本研究构建 | |
质粒 | A1 | pUC19, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 |
A2 | pUC19, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
A3 | pUC19, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
A4 | pUC19, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
A5 | pUC19, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
A8 | pUC19, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 课题组构建 | |
A9 | pUC19, ΔACC1:: P HXT1 -ACC1-T ACC1 | 本研究构建 | |
A11 | pUC19, Δ308a::P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 课题组构建 | |
A12 | pUC19, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 课题组构建 | |
A13 | pUC19, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 课题组构建 | |
A14 | pUC19, ΔGDH1::P TEF1-GDH2-T PGK1 | 本研究构建 | |
A15 | pUC19, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1 | 课题组构建 | |
A16 | pUC19, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10 -ERG10-T VMA2 | 课题组构建 | |
A17 | pUC19,Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
A18 | pUC19,ΔDPP1::P Gal1 -UPC2-1-T GPD1 | 本研究构建 |
引物 | 序列(5′-3′) |
---|---|
P Gal1 -AgBIS-F1 | GAAAAAACTATAATGGCTGGTGTTTCTGCTG |
T PGK1 - AgBIS-R1 | GGAAAGCTTTTACAATGGCAATGGTTCGATCAAAC |
AgBIS-T PGK1 -F1 | CCATTGTAAAAGCTTTCCCATGTCTCTACTGG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
P HXT1 -F1 | GGTTCAAGCAGAAGAGACAACAATTG |
P HXT1 -ACC1-R1 | AAGCTTTCTTCGCTCATGATTTTACGTATATCAACTAGTTGACGATTATG |
ACC1-F1 | ATGAGCGAAGAAAGCTTATTCGAG |
ACC1-R1 | GATGACTTTCCTCTTAGACTGGGAC |
P HXT1 -FAS1-R1 | GTGGAGTAAGCGTCCATGATTTTACGTATATCAACTAGTTGACG |
FAS1-F1 | ATGGACGCTTACTCCACAAG |
FAS1-R1 | GATATAGATCACGCAATTCTTCAAAGTAG |
GDH1L-P TEF1 -F1 | GAGACCAAAAAGAAAAAGAAGACATGGAGGCCCAGAATAC |
GDH2-P TEF1 -R1 | GATTTTTGTTATCAAAAAGCATGGTTGTTTATGTTCGGATGTGATG |
GDH2-F1 | ATGCTTTTTGATAACAAAAATCGCGGTG |
GDH2-R1 | TCAAGCACTTGCCTCCGCTTC |
GDH2-T PGK1 -F1 | GGAGGCAAGTGCTTGAAAGCTTTCCCATGTCTCTACTG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
ADH2-F1 | ATGTCTATTCCAGAAACTCAAAAAGC |
ADH2-R1 | CAAACTTATCGAGAGAAAGCTTATTTAGAAGTGTCAACAACGTATCTACC |
表2 本研究所用引物
Table 2 Primers used in this study
引物 | 序列(5′-3′) |
---|---|
P Gal1 -AgBIS-F1 | GAAAAAACTATAATGGCTGGTGTTTCTGCTG |
T PGK1 - AgBIS-R1 | GGAAAGCTTTTACAATGGCAATGGTTCGATCAAAC |
AgBIS-T PGK1 -F1 | CCATTGTAAAAGCTTTCCCATGTCTCTACTGG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
P HXT1 -F1 | GGTTCAAGCAGAAGAGACAACAATTG |
P HXT1 -ACC1-R1 | AAGCTTTCTTCGCTCATGATTTTACGTATATCAACTAGTTGACGATTATG |
ACC1-F1 | ATGAGCGAAGAAAGCTTATTCGAG |
ACC1-R1 | GATGACTTTCCTCTTAGACTGGGAC |
P HXT1 -FAS1-R1 | GTGGAGTAAGCGTCCATGATTTTACGTATATCAACTAGTTGACG |
FAS1-F1 | ATGGACGCTTACTCCACAAG |
FAS1-R1 | GATATAGATCACGCAATTCTTCAAAGTAG |
GDH1L-P TEF1 -F1 | GAGACCAAAAAGAAAAAGAAGACATGGAGGCCCAGAATAC |
GDH2-P TEF1 -R1 | GATTTTTGTTATCAAAAAGCATGGTTGTTTATGTTCGGATGTGATG |
GDH2-F1 | ATGCTTTTTGATAACAAAAATCGCGGTG |
GDH2-R1 | TCAAGCACTTGCCTCCGCTTC |
GDH2-T PGK1 -F1 | GGAGGCAAGTGCTTGAAAGCTTTCCCATGTCTCTACTG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
ADH2-F1 | ATGTCTATTCCAGAAACTCAAAAAGC |
ADH2-R1 | CAAACTTATCGAGAGAAAGCTTATTTAGAAGTGTCAACAACGTATCTACC |
1 | Zhao Y K, Zhu K, Li J, et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica [J]. Microbial Biotechnology, 2021, 14(6): 2497-2513. |
2 | Yeo S K, Ali A Y, Hayward O A, et al. β-bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines[J]. Phytotherapy Research, 2016, 30(3): 418-425. |
3 | Jou Y J, Hua C H, Lin C S, et al. Anticancer activity of γ-bisabolene in human neuroblastoma cells via induction of p53-mediated mitochondrial apoptosis[J]. Molecules, 2016, 21(5): 601. |
4 | Peralta-Yahya P P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel[J]. Nature Communications, 2011, 2: 483. |
5 | Baral N R, Kavvada O, Mendez-Perez D, et al. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks[J]. Energy & Environmental Science, 2019, 12(3): 807-824. |
6 | Wang P P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019, 5: 5. |
7 | Liu C L, Xue K, Yang Y K, et al. Metabolic engineering strategies for sesquiterpene production in microorganism[J]. Critical Reviews in Biotechnology, 2022, 42(1): 73-92. |
8 | Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697. |
9 | Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E111-E118. |
10 | Zhang Y, Song X H, Lai Y M, et al. High-yielding terpene-based biofuel production in Rhodobacter capsulatus [J]. ACS Synthetic Biology, 2021, 10(6): 1545-1552. |
11 | Özaydın B, Burd H, Lee T S, et al. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metabolic Engineering, 2013, 15: 174-183. |
12 | Zhao B X, Zhang Y H, Wang Y P, et al. Biosynthesis of α-bisabolene from low-cost renewable feedstocks by peroxisome engineering and systems metabolic engineering of the yeast Yarrowia lipolytica [J]. Green Chemistry, 2023, 25(20): 8145-8159. |
13 | Zhang Y P, Wang J, Wang Z B, et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae [J]. Nature Communications, 2019, 10(1): 1053. |
14 | Gietz R D, Schiestl R H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1): 31-34. |
15 | Chen H L, Li M J, Liu C Q, et al. Enhancement of the catalytic activity of isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis[J]. Microbial Cell Factories, 2018, 17(1): 65. |
16 | Donald K A, Hampton R Y, Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 1997, 63(9): 3341-3344. |
17 | Bohlmann J, Crock J, Jetter R, et al. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6756-6761. |
18 | Parveen I, Wang M, Zhao J P, et al. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E, E)-farnesol and α-bisabolene synthases[J]. Plant Molecular Biology, 2015, 89(4/5): 451-462. |
19 | Mafu S, Karunanithi P S, Palazzo T A, et al. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 974-979. |
20 | Lancaster J, Lehner B, Khrimian A, et al. An IDS-type sesquiterpene synthase produces the pheromone precursor (Z)- α-bisabolene in Nezara viridula [J]. Journal of Chemical Ecology, 2019, 45(2): 187-197. |
21 | Chan A P, Crabtree J, Zhao Q, et al. Draft genome sequence of the oilseed species Ricinus communis [J]. Nature Biotechnology, 2010, 28(9): 951-956. |
22 | Yuan J F, Ching C B. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14: 38. |
23 | Xie W P, Ye L D, Lv X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18. |
24 | Dusséaux S, Wajn W T, Liu Y X, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31789-31799. |
25 | Yu T, Zhou Y J, Huang M T, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J]. Cell, 2018, 174(6): 1549-1558.e14. |
26 | Davies B S J, Wang H S, Rine J. Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms[J]. Molecular and Cellular Biology, 2005, 25(16): 7375-7385. |
27 | Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
28 | van Rossum H M, Kozak B U, Pronk J T, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing[J]. Metabolic Engineering, 2016, 36: 99-115. |
29 | 张鸿伟, 王鹏超. 微生物辅因子工程研究进展[J]. 中国生物工程杂志, 2023, 43(4): 112-122. |
Zhang H W, Wang P C. Research progress of microbial cofactor engineering[J]. China Biotechnology, 2023, 43(4): 112-122. | |
30 | Asadollahi M A, Maury J, Patil K R, et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering[J]. Metabolic Engineering, 2009, 11(6): 328-334. |
31 | Hou J, Vemuri G N, Bao X M, et al. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2009, 82(5): 909-919. |
32 | Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2017, 65(37): 8162-8170. |
33 | 陈孚江, 周景文, 史仲平, 等. 乙酰辅酶A合成代谢对酿酒酵母生理功能的影响[J]. 微生物学报, 2010, 50(9): 1172-1179. |
Chen F J, Zhou J W, Shi Z P, et al. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae [J]. Acta Microbiologica Sinica, 2010, 50(9): 1172-1179. | |
34 | Huang Y L, Ye Z L, Wan X K, et al. Systematic mining and evaluation of the sesquiterpene skeletons as high energy aviation fuel molecules[J]. Advanced Science, 2023, 10(23): e2300889. |
[1] | 那雪梅, 王雨, 姜尧竹, 贾男, 王颖, 李春. 异源CYP450酶的表达优化促进工程酿酒酵母合成熊果酸[J]. 化工学报, 2024, 75(7): 2624-2632. |
[2] | 孙涛, 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊. 合成生物学改造酵母驱动丁二酸绿色生物制造[J]. 化工学报, 2024, 75(4): 1382-1393. |
[3] | 王雪颖, 周雍进, 赵宗保. 非天然氧化还原辅酶赋能生物制造[J]. 化工学报, 2024, 75(11): 4037-4047. |
[4] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[5] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[6] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[7] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[8] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[9] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[10] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[11] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[12] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[13] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[14] | 张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108. |
[15] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||