化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2970-2982.DOI: 10.11949/0438-1157.20240221
收稿日期:
2024-02-29
修回日期:
2024-04-16
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
郑晓园
作者简介:
郑晓园(1986—),男,博士,副教授,xyzheng@usst.edu.cn
基金资助:
Xiaoyuan ZHENG(), Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU
Received:
2024-02-29
Revised:
2024-04-16
Online:
2024-08-25
Published:
2024-08-21
Contact:
Xiaoyuan ZHENG
摘要:
利用外源氮气加压的方式实现了水热过程温度-压力解耦,考察了亚临界水热过程有机物组成和初始水热压力对污水污泥中磷形态转化的影响,同时验证了该过程中生成蓝铁矿的可行性。污泥模化物水热实验表明,初始水热压力强化了磷富集于水热炭中,促进了葡萄糖和蛋白质转化为还原性物质,从水热炭中观察到较强的蓝铁矿X射线衍射峰。城市污泥水热实验表明,水热处理有利于磷富集于水热炭中,压力强化了磷向水热炭迁移,总磷(TP)浓度从31.45 mg/g(0.1MPa)提升到39.68 mg/g(1.0 MPa)。水热温度110℃时,增加初始水热压力促进了污泥中Fe(Ⅲ)-P向Fe(Ⅱ)-P转化,1.0 MPa水热炭中Fe(Ⅱ)-P浓度为原始污泥的6.31倍。提高初始水热压力促进了污泥中碳水化合物和蛋白质等有机物分解形成有机酸,使得水热液pH降低;蛋白质转化导致水热液中
中图分类号:
郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982.
Xiaoyuan ZHENG, Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU. Phosphorus transformation during subcritical hydrothermal conversion of sewage sludge[J]. CIESC Journal, 2024, 75(8): 2970-2982.
图1 温度-压力解耦水热实验过程温度与压力变化及自制针铁矿X射线衍射图
Fig.1 Changes of temperature and pressure in the decoupling temperature-pressure hydrothermal process and X-ray diffraction pattern of self-made goethite
图4 葡萄糖与蛋白质质量比对水热炭中各形态磷含量和其占TP比的影响
Fig.4 Effect of mass ratio of glucose to protein on the content of each phosphorus fraction and the proportion of each phosphorus fraction in TP in hydrochar samples
图5 污泥模化物水热炭和提取的Res-P产物 X射线衍射图
Fig.5 X-ray diffraction patterns of hydrochar derived from model compounds of sewage sludge and extracted solids with Res-P fraction
图3 葡萄糖与蛋白质质量比对水热炭收率、水热液pH与NH4+-N浓度、水热液中Fe2+与TFe浓度以及ORP和磷质量平衡的影响
Fig.3 Effect of mass ratio of glucose to protein on hydrochar yield, pH and NH4+-N concentration of process water, Fe2+and TFe concentration and ORP of process water, and mass balance of phosphorus
图6 葡萄糖与蛋白质质量比为1∶1.5时初始水热压力对水热炭收率、水热液pH与NH4+-N浓度、水热液中Fe2+浓度与TFe浓度以及ORP和磷质量平衡的影响
Fig.6 Effect of initial pressure on hydrochar yield, pH and NH4+-N concentration of process water, Fe2+ and TFe concentration and ORP of process water, and mass balance of phosphorus at the mass ratio of glucose to protein = 1∶1.5
图7 初始压力对模化物水热炭中各形态磷含量和其占TP比的影响
Fig.7 Effect of initial pressure on the content of each phosphorus fraction and the proportion of each phosphorus fraction in TP in hydrochar samples
图8 葡萄糖与蛋白质质量比为1∶1.5时增压水热炭X射线衍射图
Fig.8 X-ray diffraction patterns of hydrochar samples prepared at different initial pressure at the mass ratio of glucose to protein = 1∶1.5
图10 初始水热压力对污泥水热炭中各形态磷含量和其占TP比的影响
Fig.10 Effect of initial pressure on the content of each phosphorus fraction and the proportion of each phosphorus fraction in TP in hydrochar samples
图9 初始水热压力对水热炭收率、水热液pH与NH4+-N浓度、水热液中Fe2+与TFe浓度以及ORP和磷质量平衡的影响
Fig.9 Effect of initial pressure on hydrochar yield, pH of and NH4+-N concentration of process water, Fe2+ and TFe concentration and ORP of process water, and mass balance of phosphorus
图12 原始污泥及水热炭P 2p XPS谱图及压力对各磷形态相对峰面积占比的影响
Fig.12 P 2p XPS spectra of raw sludge and hydrochar samples and influence of initial pressure on the relative peak area ratio of each phosphorus form
1 | Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292-305. |
2 | Cooper J, Lombardi R, Boardman D, et al. The future distribution and production of global phosphate rock reserves[J]. Resources, Conservation and Recycling, 2011, 57: 78-86. |
3 | Li K, Zhang D Q, Niu X J, et al. Insights into CO2 adsorption on KOH-activated biochars derived from the mixed sewage sludge and pine sawdust[J]. Science of the Total Environment, 2022, 826: 154133. |
4 | Zheng X Y, Ye Y T, Jiang Z W, et al. Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive[J]. Science of the Total Environment, 2020, 738: 139786. |
5 | 王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930. |
Wang C, Liu Q W, Zhi Y, et al. Contents and forms of phosphorous in the municipal sewage sludge of China[J]. Environmental Science, 2019, 40(4): 1922-1930. | |
6 | Wilfert P, Dugulan A I, Goubitz K, et al. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery[J]. Water Research, 2018, 144: 312-321. |
7 | Frederichs T, Dobeneck von T, Bleil U, et al. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16/17/18/19): 669-679. |
8 | 钟旭群, 庄故章. 蓝铁矿特征及其对铁矿选矿的意义[J]. 有色金属, 2011, 63(2): 199-203. |
Zhong X Q, Zhuang G Z. The mineralogical features of vivianite and its significance on iron ore process[J]. Nonferrous Metals, 2011, 63(2): 199-203. | |
9 | Prot T, Nguyen V H, Wilfert P, et al. Magnetic separation and characterization of vivianite from digested sewage sludge[J]. Separation and Purification Technology, 2019, 224: 564-579. |
10 | 康素琴, 郑亚卿, 杨睿, 等. 基于酸浸焚烧污泥灰中的磷释放及蓝铁矿生成[J]. 中国环境科学, 2023, 43(1): 225-233. |
Kang S Q, Zheng Y Q, Yang R, et al. Phosphorus release and formation of vivianite from acid leaching incineration sludge ash[J]. China Environmental Science, 2023, 43(1): 225-233. | |
11 | Wang S, Wu Y, An J K, et al. Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery[J]. Environmental Science & Technology, 2020, 54(17): 10850-10858. |
12 | Wang Q, Zhang C Q, Patel D, et al. Coevolution of iron, phosphorus, and sulfur speciation during anaerobic digestion with hydrothermal pretreatment of sewage sludge[J]. Environmental Science & Technology, 2020, 54(13): 8362-8372. |
13 | 陈伟, 郑晓园, 纪莎莎, 等. 污水污泥水热炭化处理研究进展[J]. 热能动力工程, 2020, 35(2): 1-8, 25. |
Chen W, Zheng X Y, Ji S S, et al. Research progress on hydrothermal carbonization of sewage sludge[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(2): 1-8, 25. | |
14 | Wang F, Guo C N, Liu X Y, et al. Revealing carbon-iron interaction characteristics in sludge-derived hydrochars under different hydrothermal conditions[J]. Chemosphere, 2022, 300: 134572. |
15 | Xiao Y, Ding L, Yang Y, et al. Iron valence state evolution and hydrochar properties under hydrothermal carbonization of dyeing sludge[J]. Waste Management, 2022, 152: 94-101. |
16 | Wang Q, Zhang C Q, Liu P, et al. Effect of interstage hydrothermal treatment on anaerobic digestion of sewage sludge: speciation evolution of phosphorus, iron, and sulfur[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 16515-16525. |
17 | Ogorodova L, Vigasina M, Mel'chakova L, et al. Enthalpy of formation of natural hydrous iron phosphate: vivianite[J]. The Journal of Chemical Thermodynamics, 2017, 110: 193-200. |
18 | Yu S J, Zhao P, Yang X X, et al. Low-temperature hydrothermal carbonization of pectin enabled by high pressure[J]. Journal of Analytical and Applied Pyrolysis, 2022, 166: 105627. |
19 | 于士杰, 赵鹏, 刘茂清, 等. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响[J]. 燃料化学学报, 2023, 51(8): 1106-1113, 1026. |
Yu S J, Zhao P, Liu M Q, et al. Effects of decoupled temperature and pressure on the hydrothermal process of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1106-1113, 1026. | |
20 | Zhuang X Z, Liu J G, Zhang Q, et al. A review on the utilization of industrial biowaste via hydrothermal carbonization[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111877. |
21 | Lu K X, Ping Q, Li Y M. Understanding the abiotic interaction between phosphate and macromolecular organic compounds in waste activated sludge during anaerobic treatment[J]. Science of the Total Environment, 2021, 782: 146864. |
22 | Zhang X, Zhao B W, Li R, et al. Study on the feasibility of carbon source recovery by upflow anaerobic sludge blanket in simulated municipal wastewater[J]. Science of the Total Environment, 2023, 878: 163157. |
23 | Shen Y T, Qiu S, Chen Z P, et al. Free ammonia is the primary stress factor rather than total ammonium to Chlorella sorokiniana in simulated sludge fermentation liquor[J]. Chemical Engineering Journal, 2020, 397: 125490. |
24 | Piaskowski K. Orthophosphate removal from aqueous solutions using drinking-water treatment sludge[J]. Water Science and Technology, 2013, 68(8): 1757-1762. |
25 | Yu B H, Luo J H, Xie H H, et al. Species, fractions, and characterization of phosphorus in sewage sludge: a critical review from the perspective of recovery[J]. Science of the Total Environment, 2021, 786: 147437. |
26 | Guo Q Q, Wang Y N, Zhao L Q, et al. Bioavailability transition path of phosphorus species during the sewage sludge incineration process[J]. Environmental Research, 2024, 247: 118167. |
27 | Deng S Y, Liu J Q, Yang X F, et al. Release of phosphorus through pretreatment of waste activated sludge differs essentially from that of carbon and nitrogen resources: comparative analysis across four wastewater treatment facilities[J]. Bioresource Technology, 2024, 396: 130423. |
28 | Gu S, Qian Y G, Jiao Y, et al. An innovative approach for sequential extraction of phosphorus in sediments: ferrous iron P as an independent P fraction[J]. Water Research, 2016, 103: 352-361. |
29 | Wang Q, Kim T H, Reitzel K, et al. Quantitative determination of vivianite in sewage sludge by a phosphate extraction protocol validated by PXRD, SEM-EDS, and 31P NMR spectroscopy towards efficient vivianite recovery[J]. Water Research, 2021, 202: 117411. |
30 | 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025. |
Zheng X Y, Jiang Z W, Chen W, et al. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. | |
31 | Zhuang X Z, Huang Y Q, Song Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245: 463-470. |
32 | Wang T F, Zhai Y B, Zhu Y, et al. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste[J]. Bioresource Technology, 2018, 247: 182-189. |
33 | Zhang Q Z, Cao Y, He M J, et al. Improved energy recovery from yard waste by water-starved hydrothermal treatment: effects of process water and pressure[J]. Bioresource Technology, 2024, 394: 130211. |
34 | Zheng X Y, Shen M X, Ying Z, et al. Correlating phosphorus transformation with process water during hydrothermal carbonization of sewage sludge via experimental study and mathematical modelling[J]. Science of the Total Environment, 2022, 807: 150750. |
35 | Wang S N, Cao J S, Zhang J L, et al. Recovery of phosphorus from wastewater containing humic substances through vivianite crystallization: interaction and mechanism analysis[J]. Journal of Environmental Management, 2023, 331: 117324. |
36 | 郝晓地, 周健, 王崇臣. 探究污泥厌氧消化系统中蓝铁矿生成的干扰因子[J]. 中国给水排水, 2018, 34(23): 1-7. |
Hao X D, Zhou J, Wang C C. Determination of interference factors of vivianite formation in anaerobic digestion of excess sludge[J]. China Water & Wastewater, 2018, 34(23): 1-7. | |
37 | Shi Y, Chen Z, Cao Y, et al. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion[J]. Journal of Hazardous Materials, 2021, 403: 123649. |
38 | Qian T T, Yang Q, Jun D C F, et al. Transformation of phosphorus in sewage sludge biochar mediated by a phosphate-solubilizing microorganism[J]. Chemical Engineering Journal, 2019, 359: 1573-1580. |
[1] | 秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421. |
[2] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[3] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[4] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[5] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[6] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[7] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[8] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[9] | 王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411. |
[10] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[11] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[12] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 278
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 227
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||