化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2983-2990.DOI: 10.11949/0438-1157.20240006
收稿日期:
2024-01-03
修回日期:
2024-04-23
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
王军锋
作者简介:
左磊(1994—),男,博士研究生,zuolei@stmail.ujs.edu.cn
基金资助:
Lei ZUO1(), Junfeng WANG1,2(
), Jian GAO1, Daorui WANG1
Received:
2024-01-03
Revised:
2024-04-23
Online:
2024-08-25
Published:
2024-08-21
Contact:
Junfeng WANG
摘要:
电场作用下的液滴燃烧是研究静电喷雾燃烧的基础。设计搭建了电场作用下燃料液滴燃烧实验装置,通过可视化手段研究了竖直电场中生物柴油液滴的燃烧行为,分析了不同电场度下的火焰形貌、液滴形态演变特征及液滴燃烧规律。结果表明,电场力与自然浮力的竞争决定了火焰形貌,随着电场强度增大,向上火焰、准球形火焰和向下火焰相继出现,表现为上火焰高度减小、下火焰高度增大、火焰宽度先增大后减小、火焰锋面面积先减小后增大,其最大变化幅度依次为69.9%、243.1%、17.0%、10.9%。由于火焰锋面是燃料蒸气和氧气的反应区域,液滴的燃烧持续期随着电场强度增大而呈现先增大后减小的趋势,最大变化幅度为18.1%。
中图分类号:
左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990.
Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet[J]. CIESC Journal, 2024, 75(8): 2983-2990.
密度/(kg/m3) | 表面张力/(N/m) | 动力黏度/(mPa∙s) | 介电常数 |
---|---|---|---|
870 | 0.034 | 5.01 | 2.72 |
表1 生物柴油在25℃下的理化性质
Table 1 Physicochemical properties of biodiesel at 25℃
密度/(kg/m3) | 表面张力/(N/m) | 动力黏度/(mPa∙s) | 介电常数 |
---|---|---|---|
870 | 0.034 | 5.01 | 2.72 |
1 | Gan Y H, Luo Y L, Wang M, et al. Effect of alternating electric fields on the behaviour of small-scale laminar diffusion flames[J]. Applied Thermal Engineering, 2015, 89: 306-315. |
2 | Meng X W, Wu X M, Kang C, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames[J]. Energy and Fuels, 2012, 26(11): 6612-6620. |
3 | Liu H C, Peng F, Cai W W. Dynamic response of diffusion flames under the high voltage direct current electric field[J]. International Communications in Heat and Mass Transfer, 2022, 132: 105891. |
4 | Sayed-Kassem A, Elorf A, Gillon P, et al. Numerical modelling to study the effect of DC electric field on a laminar ethylene diffusion flame[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105167. |
5 | Belhi M, Lee B J, Cha M S, et al. Three-dimensional simulation of ionic wind in a laminar premixed Bunsen flame subjected to a transverse DC electric field[J]. Combustion and Flame, 2019, 202: 90-106. |
6 | 吴心祎, 吴婧瑄, 龚岩, 等. 高压直流电场作用下的甲烷-氧气层流扩散火焰稳定性[J]. 华东理工大学学报(自然科学版), 2023, 49(5): 653-659. |
Wu X Y, Wu J X, Gong Y, et al. Flame stability of methane-oxygen laminar diffusion under high-voltage direct current field[J]. Journal of East China University of Science and Technology, 2023, 49(5): 653-659. | |
7 | Kuhl J, Seeger T, Zigan L, et al. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields[J]. Combustion and Flame, 2017, 176: 391-399. |
8 | Yoon S H, Seo B, Park J, et al. Edge flame propagation via parallel electric fields in nonpremixed coflow jets[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5537-5544. |
9 | Zhang Y, Wu Y X, Yang H R, et al. Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames[J]. Fuel, 2013, 109: 350-355. |
10 | Liu A X, Luo K H, Rigopoulos S, et al. Effects of the electric field on soot formation in combustion: a coupled charged particle PBE-CFD framework[J]. Combustion and Flame, 2022, 239: 111796. |
11 | Chien Y C, Escofet-Martin D, Dunn-Rankin D. Ion current and carbon monoxide release from an impinging methane/air coflow flame in an electric field[J]. Combustion and Flame, 2019, 204: 250-259. |
12 | Kuhl J, Jovicic G, Zigan L, et al. Influence of electric fields on premixed laminar flames: visualization of perturbations and potential for suppression of thermoacoustic oscillations[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3521-3528. |
13 | Murphy D C, Sánchez-Sanz M, Fernandez-Pello C. The role of non-thermal electrons in flame acceleration[J]. Combustion and Flame, 2017, 182: 48-57. |
14 | Gan Y H, Li H G, Jiang Z W, et al. An experimental investigation on the electrospray characteristics in a meso-scale system at different modes[J]. Experimental Thermal and Fluid Science, 2019, 106: 130-137. |
15 | Jiang Z W, Gan Y H, Ju Y G, et al. Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor[J]. Energy, 2019, 179: 843-849. |
16 | 王军锋, 黄继伟, 王贞涛, 等. 基于高速摄像技术的生物柴油静电雾化研究[J]. 农业机械学报, 2011, 42(3): 26-30. |
Wang J F, Huang J W, Wang Z T, et al. Electrostatic atomization of biodiesel based on high-speed camera technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 26-30. | |
17 | 王贞涛, 王军锋, 顾利平. 生物柴油雾滴静电破碎机理与实验研究[J]. 高电压技术, 2013, 39(1): 135-140. |
Wang Z T, Wang J F, Gu L P. Theoretical and experimental investigation on mechanism of biodiesel droplets electrostatic breakup[J]. High Voltage Engineering, 2013, 39(1): 135-140. | |
18 | Xu H J, Wang J F, Li B, et al. Electrospray characteristics and cooling performance of dielectric fluid HFE-7100[J]. Energy, 2022, 259: 125072. |
19 | Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882, 14(87): 184-186. |
20 | Chen N G, Gan Y H, Luo Y L, et al. A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale[J]. Fuel Processing Technology, 2022, 234: 107342. |
21 | Deng W W, Klemic J F, Li X H, et al. Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2239-2246. |
22 | Gan Y H, Tong Y, Ju Y G, et al. Experimental study on electro-spraying and combustion characteristics in meso-scale combustors[J]. Energy Conversion and Management, 2017, 131: 10-17. |
23 | Gan Y H, Tong Y, Jiang Z W, et al. Electro-spraying and catalytic combustion characteristics of ethanol in meso-scale combustors with steel and platinum meshes[J]. Energy Conversion and Management, 2018, 164: 410-416. |
24 | Faeth G M. Current status of droplet and liquid combustion[J]. Progress in Energy and Combustion Science, 1977, 3(4): 191-224. |
25 | Shang W W, Cao J W, Yang S Y, et al. In-flame soot quantification of n-hexadecane droplets using diffused back-illumination extinction imaging[J]. Case Studies in Thermal Engineering, 2022, 30: 101699. |
26 | Imamura O, Kubo Y, Osaka J, et al. A study on single fuel droplets combustion in vertical direct current electric fields[J]. Proceedings of the Combustion Institute, 2005, 30(2): 1949-1956. |
27 | Imamura O, Chen B, Nishida S, et al. Combustion of ethanol fuel droplet in vertical direct current electric field[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2005-2011. |
28 | Luo Y L, Jiang Z W, Gan Y H, et al. Evaporation and combustion characteristics of an ethanol fuel droplet in a DC electric field[J]. Journal of the Energy Institute, 2021, 98: 216-222. |
29 | 方朝纲, 宋蔷, 仲蕾, 等. 电场作用下正癸烷液滴在常温常压下的燃烧特性[J]. 燃烧科学与技术, 2012, 18(6): 486-490. |
Fang C G, Song Q, Zhong L, et al. Combustion behavior of n-decane droplet in direct current electric field in normal gravity field[J]. Journal of Combustion Science and Technology, 2012, 18(6): 486-490. | |
30 | 方朝纲, 宋蔷, 仲蕾, 等. 重力场作用下三种不同燃料液滴在垂直电场中的燃烧特性[J]. 清华大学学报(自然科学版), 2014, 54(1): 97-101. |
Fang C G, Song Q, Zhong L, et al. Combustion behavior of three different fuel droplets in vertical electric field under gravity[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(1): 97-101. | |
31 | Adu-Mensah D, Mei D Q, Zuo L, et al. A review on partial hydrogenation of biodiesel and its influence on fuel properties[J]. Fuel, 2019, 251: 660-668. |
32 | Wang J G, Qiao X Q, Ju D H, et al. Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations[J]. Energy, 2019, 183: 149-159. |
33 | Ando S, Wu Y X, Nakaya S, et al. Droplet combustion behavior of oxidatively degraded methyl laurate and methyl oleate in microgravity[J]. Combustion and Flame, 2020, 214: 199-210. |
34 | Tang Y, Sun J G, Shi B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges[J]. Combustion and Flame, 2021, 231: 111483. |
[1] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[2] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[3] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[4] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
[5] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[6] | 张昕锐, 陈雪梅. CNT/PVA@碳布膜的光电联合驱动界面蒸发性能研究[J]. 化工学报, 2024, 75(3): 1028-1039. |
[7] | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
[8] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
[9] | 李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170. |
[10] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[11] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[12] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[15] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||