化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1671-1679.DOI: 10.11949/0438-1157.20241137
收稿日期:2024-10-15
修回日期:2024-11-18
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
张亚婷
作者简介:张晗筱(1999—),女,硕士研究生,xbyJune@icloud.com
基金资助:
Hanxiao ZHANG(
), Ruiqi WANG, Yating ZHANG(
)
Received:2024-10-15
Revised:2024-11-18
Online:2025-04-25
Published:2025-05-12
Contact:
Yating ZHANG
摘要:
对换热器的结垢状态进行精准预测,可以及时了解结垢程度,从而有针对性地实施清洁,对提高换热器使用经济性和生产安全性具有重要意义。利用卷积神经网络(CNN)与长短期记忆网络(LSTM)的模型集成对换热器污垢因子进行预测,采用大量换热器历史数据对所建立的CNN-LSTM模型进行训练,取得了良好的预测效果。与单一的CNN和LSTM模型及文献中的多层感知器神经网络模型(MLPNN)相比,所建立的CNN-LSTM模型具有准确性更高、稳定性更强的特点。在所展示的案例中,决定系数(R2)为0.98167,平均绝对百分误差(MAPE)为3.199×10-3,不仅为解决换热器结垢问题提供了理论基础,而且为换热器安全运行与维护策略提供了更科学、精准的依据,有助于提升整个换热工段的经济性和生产安全性。
中图分类号:
张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679.
Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network[J]. CIESC Journal, 2025, 76(4): 1671-1679.
| 归一化方式 | R2 |
|---|---|
| [-2,2]归一化 | 0.90955 |
| [-2,0]归一化 | 0.65239 |
| [-1,0]归一化 | 0.73828 |
| [-1,1]归一化 | 0.91915 |
| [0,1]归一化 | 0.95739 |
| [0,2]归一化 | 0.88683 |
| 不进行归一化 | 0.61451 |
表1 归一化处理对比
Table 1 Normalized processing comparison
| 归一化方式 | R2 |
|---|---|
| [-2,2]归一化 | 0.90955 |
| [-2,0]归一化 | 0.65239 |
| [-1,0]归一化 | 0.73828 |
| [-1,1]归一化 | 0.91915 |
| [0,1]归一化 | 0.95739 |
| [0,2]归一化 | 0.88683 |
| 不进行归一化 | 0.61451 |
| 评价指标 | 训练集 | 测试集 | 所有数据集 |
|---|---|---|---|
| R2 | 0.98441 | 0.98228 | 0.98167 |
| MAE | 1.1246×10-2 | 3.7923×10-2 | — |
| MAPE | 0.29784×10-3 | 3.1992×10-3 | — |
表2 所得到的神经网络在训练集和测试集的性能
Table 2 The performance of the obtained neural network on the training set and the testing set
| 评价指标 | 训练集 | 测试集 | 所有数据集 |
|---|---|---|---|
| R2 | 0.98441 | 0.98228 | 0.98167 |
| MAE | 1.1246×10-2 | 3.7923×10-2 | — |
| MAPE | 0.29784×10-3 | 3.1992×10-3 | — |
| 单变量 | 训练集R2 | 测试集R2 | 所有数据集R2 |
|---|---|---|---|
| 密度 | 0.92198 | 0.91917 | 0.92295 |
| 流体氧含量 | 0.92218 | 0.91054 | 0.91925 |
| 流体速度 | 0.9222 | 0.73436 | 0.84173 |
| 流体温度 | 0.9226 | 0.91167 | 0.91998 |
| 等效直径 | 0.92204 | 0.78172 | 0.86249 |
| 表面温度 | 0.93016 | 0.93329 | 0.93351 |
| 时间 | 0.93453 | 0.88835 | 0.91606 |
表3 单变量预测结果对比
Table 3 Comparison of univariate prediction results
| 单变量 | 训练集R2 | 测试集R2 | 所有数据集R2 |
|---|---|---|---|
| 密度 | 0.92198 | 0.91917 | 0.92295 |
| 流体氧含量 | 0.92218 | 0.91054 | 0.91925 |
| 流体速度 | 0.9222 | 0.73436 | 0.84173 |
| 流体温度 | 0.9226 | 0.91167 | 0.91998 |
| 等效直径 | 0.92204 | 0.78172 | 0.86249 |
| 表面温度 | 0.93016 | 0.93329 | 0.93351 |
| 时间 | 0.93453 | 0.88835 | 0.91606 |
| 模型 | R2 |
|---|---|
| MLPNN | 0.97782 |
| CNN | 0.82476 |
| LSTM | 0.65960 |
| CNN-LSTM | 0.98167 |
表4 CNN-LSTM模型与其他模型预测对比
Table 4 Prediction comparison between CNN-LSTM model and other models
| 模型 | R2 |
|---|---|
| MLPNN | 0.97782 |
| CNN | 0.82476 |
| LSTM | 0.65960 |
| CNN-LSTM | 0.98167 |
| 1 | Muthukrishnan S, Krishnaswamy H, Thanikodi S, et al. Support vector machine for modelling and simulation of heat exchangers[J]. Thermal Science, 2020, 24(1 Part B): 499-503. |
| 2 | Sadeghianjahromi A, Wang C C. Heat transfer enhancement in fin-and-tube heat exchangers—a review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470. |
| 3 | 赵洪德, 刘继东, 周广启, 等. 换热器在石油化工行业中的应用及维护[J]. 造纸装备及材料, 2022, 51(3): 52-54. |
| Zhao H D, Liu J D, Zhou G Q, et al. Application and maintenance of heat exchanger in petrochemical industry[J]. Papermaking Equipment & Materials, 2022, 51(3): 52-54. | |
| 4 | 田佳阳, 贾林权, 王彧斐, 等. 考虑关键换热器备用的原油预热系统清垢周期优化[J]. 化工学报, 2016, 67(12): 5183-5189. |
| Tian J Y, Jia L Q, Wang Y F, et al. Schedule optimization for fouling removal in refinery heat exchanger networks with backup unit[J]. CIESC Journal, 2016, 67(12): 5183-5189. | |
| 5 | Tian J Y, Wang Y F, Feng X. Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks[J]. Energy, 2016, 109: 1118-1129. |
| 6 | Davoudi E, Vaferi B. Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers[J]. Chemical Engineering Research and Design, 2018, 130: 138-153. |
| 7 | 刘子奇, 赵轩, 王洋, 等. 热泵站换热器污垢研究[J]. 无线互联科技, 2018, 15(17): 69-70. |
| Liu Z Q, Zhao X, Wang Y, et al. Research on heat exchanger fouling of heat pump station[J]. Wireless Internet Technology, 2018, 15(17): 69-70. | |
| 8 | Polley G T, Wilson D I, Yeap B L, et al. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains[J]. Applied Thermal Engineering, 2002, 22(7): 777-788. |
| 9 | Yeap B L, Wilson D I, Polley G T, et al. Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models[J]. Chemical Engineering Research and Design, 2004, 82(1): 53-71. |
| 10 | Łopata S, Ocłoń P. Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger[J]. Energy, 2015, 92: 100-116. |
| 11 | 徐源, 陶苗苗, 孙灵芳. 基于灰色神经网络的换热器污垢预测研究[J]. 吉林农业科技学院学报, 2014, 23(1): 45-48. |
| Xu Y, Tao M M, Sun L F. Research on fouling prediction of heat exchanger based on grey theory and neural network[J]. Journal of Jilin Agricultural Science and Technology University, 2014, 23(1): 45-48. | |
| 12 | 余文敏, 余刃, 毛伟, 等. 基于SWLSTM的换热器在线性能预测[J]. 舰船科学技术, 2023, 45(21): 153-157. |
| Yu W M, Yu R, Mao W, et al. On-line performance prediction of heat exchanger based on SWLSTM[J]. Ship Science and Technology, 2023, 45(21): 153-157. | |
| 13 | Mohanty D K, Singru P M. Fouling analysis of a shell and tube heat exchanger using local linear wavelet neural network[J]. International Journal of Heat and Mass Transfer, 2014, 77: 946-955. |
| 14 | 刘新, 伍俊楠, 潘殿琦, 等. 基于改进FMEA的污水厂设备故障风险评估模型[J]. 中国安全科学学报, 2024, 34(8): 101-107. |
| Liu X, Wu J N, Pan D Q, et al. Equipment failure risk assessment model of wastewater treatment plant based on improved FMEA[J]. China Safety Science Journal, 2024, 34(8): 101-107. | |
| 15 | 周怡, 彭国文, 黄召, 等. 基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测[J]. 中国安全科学学报, 2024, 34(4): 145-152. |
| Zhou Y, Peng G W, Huang Z, et al. Intelligent monitoring and prediction of deformation of uranium tailings dam based on SBAS-InSAR and BPNN[J]. China Safety Science Journal, 2024, 34(4): 145-152. | |
| 16 | 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. |
| Weng R Y, Sun B, Zhao Y X, et al. Flow pattern recognition method of gas-liquid two-phase flow based on adaptive optimal kernel and convolution neural network[J]. CIESC Journal, 2018, 69(12): 5065-5072. | |
| 17 | Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. |
| 18 | 孙先亮, 李健, 韩哲哲, 等. 基于数据驱动的卷积神经网络电容层析成像图像重建[J]. 化工学报, 2020, 71(5): 2004-2016. |
| Sun X L, Li J, Han Z Z, et al. Data-driven image reconstruction of electrical capacitance tomography based on convolutional neural network[J]. CIESC Journal, 2020, 71(5): 2004-2016. | |
| 19 | 王路瑶, 吴斌, 杜志敏, 等. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252-259. |
| Wang L Y, Wu B, Du Z M, et al. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network[J]. CIESC Journal, 2018, 69(S2): 252-259. | |
| 20 | Rao R V, Saroj A. Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration[J]. Applied Thermal Engineering, 2017, 116: 473-487. |
| 21 | Asomaning S. The role of olefins in fouling of heat exchangers[D]. Vancouver: University of British Columbia, 1990. |
| 22 | Asomaning S. Heat exchanger fouling by petroleum asphaltenes[D]. Vancouver: University of British Columbia, 1997. |
| 23 | Sundaram B N. The effects of oxygen on synthetic crude oil fouling[D]. Vancouver: University of British Columbia, 1998. |
| 24 | Watkinson A P. Particulate fouling of sensible heat exchangers[D]. Vancouver: University of British Columbia, 1968. |
| 25 | Srinivasan M. Heat exchanger fouling of some Canadian crude oils[D]. Vancouver: University of British Columbia, 2008. |
| 26 | Feiz G. Annular heating probes in oil fouling: effects of wall shear stress[D]. Vancouver: University of British Columbia, 2015. |
| 27 | 李义, 刘颖慰, 都健, 等. 基于大数据建模的玉米淀粉糖工艺参数预测系统开发[J]. 当代化工研究, 2022(14): 145-152. |
| Li Y, Liu Y W, Du J, et al. System development for the prediction of key parameters in corn starch sugar process based on big data modeling[J]. Modern Chemical Research, 2022(14): 145-152. | |
| 28 | 郜亚东, 李冠, 赵立峰, 等. 一种四分位数法优化的GM(1,1)模型在高危边坡监测中应用研究[J]. 城市勘测, 2023(3): 171-175. |
| Gao Y D, Li G, Zhao L F, et al. Application of GM (1,1) model optimized by quartile method in high risk slope monitoring[J]. Urban Geotechnical Investigation & Surveying, 2023(3): 171-175. | |
| 29 | 杜林颖, 于鸿彬, 侯立国, 等. 改进的BP神经网络对飞机换热器结垢厚度预测[J]. 计算机仿真, 2020, 37(1): 27-30. |
| Du L Y, Yu H B, Hou L G, et al. Prediction of fouling thickness of aircraft heat exchanger by modified BP neural network[J]. Computer Simulation, 2020, 37(1): 27-30. | |
| 30 | Zha W S, Liu Y P, Wan Y J, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. |
| 31 | Garcia C I, Grasso F, Luchetta A, et al. A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM[J]. Applied Sciences, 2020, 10(19): 6755. |
| 32 | 张术琳, 张亚楠, 田超, 等. 基于CNN的化工园区火灾火焰图像识别研究[J]. 中国安全科学学报, 2024, 34(1): 179-186. |
| Zhang S L, Zhang Y N, Tian C, et al. Study on flame image recognition of chemical industrial park fires based on convolutional neural network[J]. China Safety Science Journal, 2024, 34(1): 179-186. | |
| 33 | Wang J, Sun L, Li H, et al. Prediction model of fouling thickness of heat exchanger based on TA-LSTM structure[J]. Processes, 2023, 11(9): 2594. |
| 34 | Barzegar R, Aalami M T, Adamowski J. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 415-433. |
| 35 | 吴婷婷, 许晓东, 吴云龙. 卷积神经网络中SPReLU激活函数的优化研究[J]. 计算机与数字工程, 2021, 49(8): 1637-1641. |
| Wu T T, Xu X D, Wu Y L. Research on optimization of SPReLU activation function in convolutional neural network[J]. Computer & Digital Engineering, 2021, 49(8): 1637-1641. | |
| 36 | Kim T Y, Cho S B. Predicting residential energy consumption using CNN-LSTM neural networks[J]. Energy, 2019, 182: 72-81. |
| 37 | Hosseini S, Khandakar A, Chowdhury M E H, et al. Novel and robust machine learning approach for estimating the fouling factor in heat exchangers[J]. Energy Reports, 2022, 8: 8767-8776. |
| [1] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [2] | 徐芳萍, 杨辉, 陈俊, 朱建勇, 陆荣秀. 基于迁移学习与残差注意力卷积网络的稀土元素组分含量软测量[J]. 化工学报, 2025, 76(4): 1647-1660. |
| [3] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| [4] | 周洋, 梁聃, 汪恺, 张艺蓝, 贾立. 基于Alopex进化算法和集成学习的多模态神经网络的污水反渗透过程建模[J]. 化工学报, 2025, 76(4): 1661-1670. |
| [5] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [6] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [7] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [8] | 郑欣雨, 任泽华, 周利, 柴士阳, 吉旭. 基于晶体图卷积神经网络的晶格能回归模型[J]. 化工学报, 2025, 76(3): 1084-1092. |
| [9] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [10] | 王大芬, 唐莉丽, 张鑫焱, 聂春雨, 李明珠, 吴菁. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报, 2025, 76(3): 1143-1155. |
| [11] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [12] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [13] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [14] | 尤潇楠, 范小强, 杨遥, 王靖岱, 阳永荣. 超临界乙烯和高压聚乙烯混合物的减压分离过程建模方法[J]. 化工学报, 2025, 76(2): 695-706. |
| [15] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号