化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 321-328.DOI: 10.11949/0438-1157.20240291
收稿日期:
2024-03-12
修回日期:
2024-04-18
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
尹春华
作者简介:
王新月(2000—),女,硕士研究生,E-mail: 13784943565@163.com
基金资助:
Xinyue WANG(), Xiaohu XU, Haiyang ZHANG, Chunhua YIN(
)
Received:
2024-03-12
Revised:
2024-04-18
Online:
2024-12-25
Published:
2024-12-17
Contact:
Chunhua YIN
摘要:
通过冷冻干燥法制备了维生素A醋酸酯(VAA)和β环糊精(β-CD)及其衍生物羟丙基β环糊精(HP-β- CD)、磺丁基醚β环糊精(SBE-β-CD)的包合物,采用傅里叶红外光谱(FT-IR)、核磁共振氢谱(1H NMR)和扫描电子显微镜(SEM)对包合物进行了表征,并对包合物的相溶解度、热稳定性、溶解度和分子结合模式进行了分析。相溶解度实验结果表明三种环糊精均与VAA形成包合比为1∶1的包合物,其中HP-β-CD的稳定常数最高,对VAA的包合效果要优于另外两种环糊精。热稳定性和溶解度变化测试实验结果表明,与游离VAA相比,三种包合物的热稳定性和水溶性均有大幅提高,其中VAA/HP-β-CD的效果最好,热损失率由52.6%下降至5.2%;水溶解度由1.9×10-4增至100 g/100 g。分子对接结果表明,HP-β-CD扩大了β-CD空腔长度,使VAA被完全包裹,并和VAA形成了分子间氢键,与VAA形成的包合物具有最小结合能。上述研究结果表明HP-β-CD是VAA的优良包合载体,能有效提高VAA的应用性能。
中图分类号:
王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328.
Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin[J]. CIESC Journal, 2024, 75(S1): 321-328.
图1 维生素A醋酸酯、环糊精与其物理混合物和包合物的红外光谱a—VAA; b—β-CD; c—VAA/β-CD物理混合物; d—VAA/β-CD包合物; e—HP-β-CD; f—VAA/HP-β-CD物理混合物; g—VAA/HP-β- CD包合物; h—SBE-β-CD; i—VAA/SBE-β-CD物理混合物; j—VAA/SBE-β-CD包合物
Fig.1 FT-IR spectra of VAA, cyclodextrins, physical mixtures, inclusion complexes
图2 维生素A醋酸酯、环糊精及其包合物的核磁共振谱图a—β-CD; b—VAA/β-CD; c—HP-β-CD; d—VAA/HP-β-CD; e—SBE-β-CD; f—VAA/SBE-β-CD
Fig.2 1HNMR spectra of VAA, cyclodextrins and inclusion complexes
样品化学位移 | H-1 | H-3 | H-6 | H-5 | H-2 | H-4 |
---|---|---|---|---|---|---|
δ(free β-CD) | 5.009 | 3.910 | 3.821 | 3.806 | 3.602 | 3.527 |
δ(VAA/β-CD) | 4.997 | 3.885 | 3.818 | 3.785 | 3.593 | 3.524 |
Δδ (VAA/β-CD) | -0.012 | -0.025 | -0.003 | -0.021 | -0.009 | -0.003 |
δ(free HP-β-CD) | 4.989 | 3.853 | 3.784 | 3.761 | 3.638 | 3.520 |
δ(VAA/ HP-β-CD) | 4.981 | 3.828 | 3.782 | 3.734 | 3.636 | 3.511 |
Δδ(VAA/ HP-β-CD) | -0.008 | -0.025 | -0.002 | -0.027 | -0.002 | -0.009 |
δ(free SBE-β-CD) | 4.978 | 3.880 | 3.792 | 3.768 | 3.579 | 3.497 |
δ(VAA/SBE-β-CD) | 4.966 | 3.844 | 3.783 | 3.735 | 3.565 | 3.498 |
Δδ (VAA/SBE-β-CD) | -0.012 | -0.036 | -0.009 | -0.033 | -0.014 | 0.001 |
表1 β-CD、HP-β-CD、SBE-β-CD与VAA包合物的核磁共振氢谱化学位移值
Table 1 1H NMR chemical shift changes of β-CD, HP-β-CD, SBE-β-CD with VAA inclusion complexes
样品化学位移 | H-1 | H-3 | H-6 | H-5 | H-2 | H-4 |
---|---|---|---|---|---|---|
δ(free β-CD) | 5.009 | 3.910 | 3.821 | 3.806 | 3.602 | 3.527 |
δ(VAA/β-CD) | 4.997 | 3.885 | 3.818 | 3.785 | 3.593 | 3.524 |
Δδ (VAA/β-CD) | -0.012 | -0.025 | -0.003 | -0.021 | -0.009 | -0.003 |
δ(free HP-β-CD) | 4.989 | 3.853 | 3.784 | 3.761 | 3.638 | 3.520 |
δ(VAA/ HP-β-CD) | 4.981 | 3.828 | 3.782 | 3.734 | 3.636 | 3.511 |
Δδ(VAA/ HP-β-CD) | -0.008 | -0.025 | -0.002 | -0.027 | -0.002 | -0.009 |
δ(free SBE-β-CD) | 4.978 | 3.880 | 3.792 | 3.768 | 3.579 | 3.497 |
δ(VAA/SBE-β-CD) | 4.966 | 3.844 | 3.783 | 3.735 | 3.565 | 3.498 |
Δδ (VAA/SBE-β-CD) | -0.012 | -0.036 | -0.009 | -0.033 | -0.014 | 0.001 |
样品 | T/K | S0/mol | Slope×10-3 | K×103/(1/mol) | ΔG/(kJ/mol) | ΔH/(kJ/mol) | ΔS/(kJ/mol) |
---|---|---|---|---|---|---|---|
283 | (1.264±0.018)×10-6 | 3.333±0.026 | 2.646±0.017 | -18.543±0.016 | -82.520±0.384 | -0.226±0.001 | |
β-CD | 285 | (0.958±0.027)×10-6 | 2.08±0.004 | 2.176±0.057 | -18.210±0.063 | -82.520±0.384 | -0.226±0.002 |
288 | (1.409±0.015)×10-6 | 2.037±0.008 | 1.448±0.009 | -17.427±0.015 | -82.520±0.384 | -0.226±0.001 | |
283 | (1.175±0.014)×10-7 | 5.049±0.026 | 43.185±0.29 | -25.113±0.016 | -252.085±0.593 | -0.802±0.002 | |
HP-β-CD | 285 | (2.191±0.053)×10-7 | 5.281±0.025 | 24.242±0.47 | -23.922±0.046 | -252.085±0.593 | -0.801±0.002 |
288 | (7.731±0.128)×10-7 | 5.279±0.065 | 6.864±0.029 | -21.153±0.010 | -252.085±0.593 | -0.802±0.002 | |
283 | (1.368±0.001) ×10-6 | 5.896±0.007 | 4.337±0.007 | -19.705±0.004 | -100.383±0.270 | -0.285±0.001 | |
SBE-β-CD | 285 | (2.133±0.003)×10-6 | 5.427±0.017 | 2.646±0.017 | -18.594±0.004 | -100.383±0.270 | -0.287±0.001 |
288 | (2.651±0.011)×10-6 | 5.304±0.002 | 2.646±0.017 | -18.214±0.009 | -100.383±0.270 | -0.285±0.001 |
表2 在不同温度下VAA/β-CD、VAA/HP-β-CD、VAA/SBE-β-CD的相溶解度系数(K)及热力学参量(ΔG、ΔH和ΔS)
Table 2 Phase solubility coefficients (K) and the estimated thermodynamic quantities for formation of VAA/β-CD, VAA/HP-β-CD, VAA/SBE-β-CD at various temperatures.
样品 | T/K | S0/mol | Slope×10-3 | K×103/(1/mol) | ΔG/(kJ/mol) | ΔH/(kJ/mol) | ΔS/(kJ/mol) |
---|---|---|---|---|---|---|---|
283 | (1.264±0.018)×10-6 | 3.333±0.026 | 2.646±0.017 | -18.543±0.016 | -82.520±0.384 | -0.226±0.001 | |
β-CD | 285 | (0.958±0.027)×10-6 | 2.08±0.004 | 2.176±0.057 | -18.210±0.063 | -82.520±0.384 | -0.226±0.002 |
288 | (1.409±0.015)×10-6 | 2.037±0.008 | 1.448±0.009 | -17.427±0.015 | -82.520±0.384 | -0.226±0.001 | |
283 | (1.175±0.014)×10-7 | 5.049±0.026 | 43.185±0.29 | -25.113±0.016 | -252.085±0.593 | -0.802±0.002 | |
HP-β-CD | 285 | (2.191±0.053)×10-7 | 5.281±0.025 | 24.242±0.47 | -23.922±0.046 | -252.085±0.593 | -0.801±0.002 |
288 | (7.731±0.128)×10-7 | 5.279±0.065 | 6.864±0.029 | -21.153±0.010 | -252.085±0.593 | -0.802±0.002 | |
283 | (1.368±0.001) ×10-6 | 5.896±0.007 | 4.337±0.007 | -19.705±0.004 | -100.383±0.270 | -0.285±0.001 | |
SBE-β-CD | 285 | (2.133±0.003)×10-6 | 5.427±0.017 | 2.646±0.017 | -18.594±0.004 | -100.383±0.270 | -0.287±0.001 |
288 | (2.651±0.011)×10-6 | 5.304±0.002 | 2.646±0.017 | -18.214±0.009 | -100.383±0.270 | -0.285±0.001 |
样品 | 溶解度/(g/100 g) |
---|---|
Free VAA | 1.9×10-4 |
VAA/β-CD | 0.85±0.05 |
VAA/HP-β-CD | 100±0.04 |
VAA/SBE-β-CD | 1.48±0.05 |
表3 游离VAA和VAA/β-CD、VAA/HP-β-CD、VAA/SBE-β-CD的水溶性
Table 3 Water solubility of free VAA and VAA/β-CD, VAA/HP-β-CD, VAA/SBE-β-CD
样品 | 溶解度/(g/100 g) |
---|---|
Free VAA | 1.9×10-4 |
VAA/β-CD | 0.85±0.05 |
VAA/HP-β-CD | 100±0.04 |
VAA/SBE-β-CD | 1.48±0.05 |
图6 β-CD(a)、HP-β-CD (b)、SBE-β-CD (c)与VAA的最优结合模式
Fig.6 The optimal binding modes by docking for the complexes of VAA with β-CD (a), HP-β-CD (b), SBE-β-CD (c)
1 | Gianeti M D, Gaspar L R, de Camargo F B, et al. Benefits of combinations of Vitamin A, C and E derivatives in the stability of cosmetic formulations[J]. Molecules, 2012, 17(2): 2219-2230. |
2 | Sachdeva B, Kaushik R, Arora S, et al. Effect of processing conditions on the stability of native Vitamin A and fortified retinol acetate in milk[J]. International Journal for Vitamin and Nutrition Research, 2021, 91(1/2): 133-142. |
3 | Zhou J J, Jia J L, He J L, et al. Cyclodextrin inclusion complexes and their application in food safety analysis: recent developments and future prospects[J]. Foods, 2022, 11(23): 3871. |
4 | Nowak J K, Sobkowiak P, Drzymała-Czyż S, et al. Fat-soluble vitamin supplementation using liposomes, cyclodextrins, or medium-chain triglycerides in cystic fibrosis: a randomized controlled trial[J]. Nutrients, 2021, 13(12): 4554. |
5 | de Melo C G, da Costa L A G, Rabello M M, et al. Enhanced solubility of albendazole in cyclodextrin inclusion complex: a molecular modeling approach and physicochemical evaluation[J]. Current Drug Delivery, 2022, 19(1): 86-92. |
6 | Aman A, Ali S, Mahalapbutr P, et al. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: in silico and in vitro studies[J]. RSC Advances, 2023, 13(39): 27244-27254. |
7 | Li Q, Pu H Y, Tang P X, et al. Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity[J]. Food Chemistry, 2018, 245: 1062-1069. |
8 | Biernacka M, Ilyich T, Zavodnik I, et al. Studies of the formation and stability of ezetimibe-cyclodextrin inclusion complexes[J]. International Journal of Molecular Sciences, 2021, 23(1): 455. |
9 | Lin H S, Leong W W Y, Yang J A, et al. Biopharmaceutics of 13-cis-retinoic acid (isotretinoin) formulated with modified beta-cyclodextrins[J]. International Journal of Pharmaceutics, 2007, 341(1/2): 238-245. |
10 | Yap K L, Liu X, Thenmozhiyal J C, et al. Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis[J]. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 2005, 25(1): 49-56. |
11 | Higuchi T A, Connors K A. Phase-Solubility Techniques[M]. New York: Interscience, 1965. |
12 | Fateminasab F, Bordbar A K, Shityakov S, et al. Diadzein complexation with unmodified cyclodextrins: a detailed experimental and theoretical study[J]. Journal of Molecular Liquids, 2018, 271: 80-95. |
13 | 吴海波, 方岩雄, 纪红兵. 助溶剂促进的β-环糊精与肉桂醛的包结性能[J]. 化工学报, 2011, 62(S1): 168-173. |
Wu H B, Fang Y X, Ji H B. Inclusion properties of β-cyclodextrin with cinnamaldehyde promoted by cosolvent[J]. CIESC Journal, 2011, 62(S1): 168-173. | |
14 | 姚培培, 樊金玲, 李德锋, 等. 光甘草定/环糊精固体包合物的制备和性质[J]. 食品科学, 2022, 43(16): 9-18. |
Yao P P, Fan J L, Li D F, et al. Preparation and characterization of glabridin/cyclodextrin solid inclusion complex[J]. Food Science, 2022, 43(16): 9-18. | |
15 | Ntountaniotis D, Leonis G, Christodoulou E, et al. Applications of NMR in drug: cyclodextrin complexes[J]. Methods in Molecular Biology, 2021, 2207: 313-325. |
16 | Szabó Z I, Ludmerczki R, Fiser B, et al. Chiral separation of rasagiline using s u l f o b u t y l e t h e r - β - c y c l o d e x t r i n : capillary electrophoresis, NMR and molecular modeling study[J]. Electrophoresis, 2019, 40(15): 1897-1903. |
17 | Betlejewska-Kielak K, Bednarek E, Budzianowski A, et al. Comprehensive characterisation of the ketoprofen-β-cyclodextrin inclusion complex using X-ray techniques and NMR spectroscopy[J]. Molecules, 2021, 26(13): 4089. |
18 | 高珊, 徐磊, 王心, 等. 薏米麸皮多酚-β-环糊精包合物特性研究[J]. 中国食品学报, 2022, 22(6): 117-124. |
Gao S, Xu L, Wang X, et al. Stuides on characterization of inclusion complex of adlay bran polyphenols with β-cyclodextrin[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 117-124. | |
19 | Giri B R, Lee J, Lim D Y, et al. Docetaxel/dimethyl-β- cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization[J]. Drug Development and Industrial Pharmacy, 2021, 47(2): 319-328. |
20 | Xu X H, Peng S Y, Bao G K, et al. β-Cyclodextrin inclusion complexes with Vitamin A and its esters: a comparative experimental and molecular modeling study[J]. Journal of Molecular Structure, 2021, 1223: 129001. |
21 | Celebioglu A, Uyar T. Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties[J]. Food & Function, 2020, 11(9): 7626-7637. |
22 | Carlotti M E, Rossatto V, Gallarate M. Vitamin A and Vitamin A palmitate stability over time and under UVA and UVB radiation[J]. International Journal of Pharmaceutics, 2002, 240(1/2): 85-94. |
23 | Wang F, Yu W B, Popesceu C, et al. Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation[J]. Pharmaceutical Development and Technology, 2022, 27(4): 389-398. |
24 | Zhu G Y, Xiao Z B, Zhu G X. Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex[J]. Journal of Food Science, 2021, 86(8): 3589-3597. |
25 | Vilanova N, Solans C. Vitamin A Palmitate-β-cyclodextrin inclusion complexes: characterization, protection and emulsification properties[J]. Food Chemistry, 2015, 175: 529-535. |
26 | Sid D, Baitiche M, Elbahri Z, et al. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and invitro studies[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36(1): 605-617. |
27 | Patil S M, Barji D S, Chavan T, et al. Solubility enhancement and inhalation delivery of cyclodextrin-based inclusion complex of delamanid for pulmonary tuberculosis treatment[J]. AAPS PharmSciTech, 2023, 24(1): 49. |
28 | Loh G O K, Tan Y T F, Peh K K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin[J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(4): 536-546. |
29 | Zhong Y Y, Li W H, Ran L D, et al. Inclusion complexes of tea polyphenols with H P - β - c y c l o d e x t r i n : preparation, characterization, molecular docking, and antioxidant activity[J]. Journal of Food Science, 2020, 85(4): 1105-1113. |
30 | Chang C K, Song M, Ma M X, et al. Preparation, characterization and molecular dynamics simulation of rutin-cyclodextrin inclusion complexes[J]. Molecules, 2023, 28(3): 955. |
[1] | 赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348. |
[2] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[3] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[4] | 赵志星, 姚智豪, 于雪峰, 杨游胜, 曾英, 于旭东. 锂钠镁共存硫酸盐体系多温相图及其应用[J]. 化工学报, 2024, 75(6): 2123-2133. |
[5] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[6] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[7] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
[8] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
[9] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[10] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[11] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[12] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[13] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[14] | 潘越, 刘相洋, 黄奕晨, 李江涛, 邱丽, 李瑞丰, 李莎, 闫晓亮. Ni/Al2O3与ZnO距离对含硫菲加氢性能的影响[J]. 化工学报, 2024, 75(10): 3548-3556. |
[15] | 于志奕, 方俊彦, 陈文尧, 钱刚, 段学志. Pt-Bi界面结构调控及其催化甘油选择性氧化反应性能[J]. 化工学报, 2024, 75(10): 3568-3578. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||